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ABSTRACT

This technical report describes an automated audio captioning
(AAC) model for the the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2021 Task 6 Challenge. In order to
utilize more acoustic and textual information, we propose a novel
sequence-to-sequence model named KPE-MAD, with a keyword
pre-trained encoder and a multi-modal attention decoder. For the
encoder, we use pre-trained classification model on the AudioSet
dataset, and finetune it with keywords of nouns and verbs as la-
bels. In addition, a multi-modal attention module is proposed to
integrate the acoustic and textual information in the decoder. Our
single model achieves the SPIDEr score of 0.279 in the evaluation
splits. And our best ensemble model by optimizing CIDEr-D via the
reinforcement learning, achieves the SPIDEr score of 0.291. Our
code1 and models will be released after the competition.

Index Terms— Audio caption, pre-training, multi-modal atten-
tion, keyword classification

1. INTRODUCTION

Automated audio captioning (AAC) is a new and challenging task
that involves different modalities. It could be described as generat-
ing a textual description (i.e. caption) given an audio signal, where
the caption should be as close as possible to a human-assigned one
[1]. In contrast to automatic speech recognition which just con-
verts speech to text, AAC converts environmental sound to text. It
is also different from sound event detection (SED) [2] and audio
tagging (AT) [3, 4] tasks, which output exact labels with start and
end time or not. Generating accurate captions needs more infor-
mation, including identification of sound events, acoustic scenes,
spatio-temporal relationships of sources, foreground versus back-
ground discrimination, concepts, and physical properties of objects
and environment [5].

One of the challenges of AAC is the lack of training data. Typ-
ical datasets in AAC, are Audio Caption [6], Audio Caps [7] and
Clotho [5]. The Clotho [5] dataset is published by DCASE 2020
and expanded in DCASE 2021. Now it contains 5,929 audio sam-
ples and 29,645 captions. However, the scales of the datasets of
AAC are quite small, comparing to datasets of image captioning,
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such as MS COCO [8] which contains one million captions and
over 16k images.

Through previous work and competitions in AAC, there are
amounts of algorithms proposed [6, 9, 10] based on sequence-to-
sequence model. M. Wu et al. [6] straightly sent the output of
encoder to the decoder. It would result in that acoustic informa-
tion wouldn’t be fully utilized. H. Wang et al. [10] proposed a
temporal attention mechanism in the decoder, which could utilize
more acoustic information for each time step. Both of them adopt a
strategy of training the whole audio caption model directly, which
would cause that the encoder couldn’t sufficiently learn the repre-
sentations of audios because of the lack of data. In addition, Y. Wu
et al. [9] proposed a pre-training method in the task by extracting
the top 300 words with the highest frequency, and achieved good
results. Before training the whole audio captioning model, they
pre-trained the convolutional neural network (CNN) encoder with
300 labels. However, the extracted words, through frequency, may
contain some meaningless words such as until, onto, etc. Besides,
the use of textual information could be further exploited.

To address the above issues, we propose a novel AAC model
which combines the keyword pre-trained CNN encoder and a de-
coder with multi-modal attention module, named KPE-MAD. On
the official evaluation splits of Clotho dataset [5], our proposed sin-
gle model could achieve the SPIDEr score of 0.279 (baseline system
is 0.051) and our best ensemble model could achieve the SPIDEr
score of 0.291 by optimizing CIDEr-D via a reinforcement learning
method, i.e. SCST [11].

The organization of the paper is as follows. Section 2 introduces
our proposed KPE-MAD. We present our experimental results and
evaluations in Section 3. Finally, we give concluding remarks and
possible future directions in Section 4.

2. SYSTEM ARCHITECTURE

In this section, our proposed KPE-MAD model is introduced and its
architecture is shown in Figure 1. Specifically, our KPE-MAD con-
sists of a keyword pre-trained encoder and a multi-modal attention
decoder. Firstly, the encoder is pre-trained with keywords which
are extracted from captions in the training data. Then, we use the
pre-trained encoder, multi-modal attention module which aligns the
acoustic and textual information, and a decoder based on the long-
short term memory (LSTM). In the following subsection, we will
introduce details about KPE-MAD model.

https://github.com/WangHelin1997/DCASE2021_Task6_PKU
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Figure 1: The architecture of our KPE-MAD caption model.

2.1. Keyword Pre-trained Encoder

The CNN encoder, which are widely used in the DCASE commu-
nity [9, 10, 12, 13], plays an important role in extracting robust time-
frequency information from raw audios. Meanwhile, with the devel-
opment of large-scale pre-training approaches, lots of pre-trained
models such as VGGish [14], PANNs [15] could improve the per-
formance of downstream tasks. In this work, we use the pre-trained
ResNet382 [15], which performs well in AudioSet dataset [16], as
our backbone network. As Section 1 states, Y. Wu et al. [9] selected
keywords by the highest frequency which is sometimes unreason-
able. Apparently it is quite difficult for us to correctly recognize
these adverbs and conjunctions from an audio sample. Instead, we
extract some more meaningful words, such as nouns and verbs (e.g.,
bird, cry, etc.) as labels.

Firstly, Natural Language Toolkit (NLTK3) which is a powerful
open-source tool is applied to extract words from each caption. And
we choose the nouns and verbs, and get rid of some useless words
through handcrafted useless vocabulary such as make, go, others,
etc.

Then, the verbs in keywords vocabulary are transformed into
their original forms and the nouns aren’t changed, because their plu-
ral forms have different meanings. Finally, we choose N keywords
with highest frequency from the modified keywords vocabulary, and
use them as class labels for pre-training.

In the training phase of the encoder, we combine all the key-
words form the 5 captions of each audio to form the training label
which is a multi-hot vector. Each word of captions is transformed
into their original forms according to the above rules. When a key-
word occurs in the keywords vocabulary, the corresponding position
of the multi-hot vector is set to 1, otherwise 0.

As Figure 1 illustrates, the pre-trained ResNet38 (Conv 1 to
Conv 6) is used as our backbone, as detailed in Table 1, which
consists of 6 convolution blocks. We refine it with fusion of multi-

2https://github.com/qiuqiangkong/audioset_
tagging_cnn

3https://github.com/nltk/nltk

Table 1: The architecture of the keyword pre-trained encoder(KPE).
GAP means the global average pooling layer. Linear(128, 2048)
means that the input dimension of the fully-connected layer is 128
and the output dimension is 2048. We take FC1 as an example
that the input features firstly go through the global average pooling
layer, and then are passed into a fully-connected layer with ReLU
activation function.

X log mel spectrogram

Conv 1
(Conv 3 × 3 @ 64, BN, ReLU ) ×2

Pooling 2× 2

Conv 2
(BasicB @ 64) ×3

Pooling 2× 2

Conv 3
(BasicB @ 128) ×4

Pooling 2× 2

Conv 4
(BasicB @ 256) ×6

Pooling 2× 2

Conv 5
(BasicB @ 512) ×3

Pooling 2× 2

Conv 6
(Conv 3 × 3 @ 2048, BN, ReLU) ×2

Pooling 2× 2
FC1 GAP,Linear(128, 2048), ReLU
FC2 GAP,Linear(256, 2048), ReLU
FC3 GAP,Linear(2048, 2048), ReLU
CLS Linear(6144, 300), Sigmoid

level features, i.e. the features after Conv 3, Conv 4 and Conv 6.
Then a global average pooling (GAP) layer and a linear layer are
applied to each level of the feature, which are FC1, FC2 and FC3.
The last classification layer (CLS) utilizes the information combin-
ing the output of the three level features to classify keywords, which
could enforce CNN model to learn more diversity of information.

More specifically, Conv 1 consists two convolotional layers
and a pooling layer applied to the log mel spectrogram. Each of
Conv 2 to Conv 5 contains some basic blocks, which are mainly
parts of ResNet38 and introduce shortcut connections between con-
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volutional layers, and a 2×2 pooling layer. We use f1, f2 and f3 to
represent the output of FC1, FC2 and FC3 respectively, and ŷ rep-
resents the output ofCLS andGAP means global average pooling.
Then we use f1, f2 and f3 to obtain the predictions ŷ ∈ RN where
N is the number of keywords.

ŷ = σ(Linear(concat(f1, f2, f3))) (1)

Given the ground truth y ∈ RN , the keyword pre-trained encoder
could be optimized by:

Lbce(y, ŷ) = −
N∑
i=1

y(i)log ŷ(i) (2)

where σ means sigmoid activation function, ŷ is the output of the
CLS. Standard binary cross entropy loss is used as the loss func-
tion, which is defined as the negative log likelihood of the expected
keyword yi given transcription ŷi at the position i.

2.2. Multi-Modal Attention Decoder

Unlike the existing audio caption models, we further incorporate
acoustic information with textual information into generating cap-
tions: we propose a multi-modal attention module to align them.
The high-level representation of acoustic features is denoted as
X = {x1, ..., xL} ∈ RL×C1 , which is the output of FC3 of the
keyword pre-trained encoder. The textual features contain the key-
words W = {w1, ..., wK} that is the K outputs of keyword pre-
trained encoder, and the previous words P = {p1, ..., pt−1} that
contain all the generated words before time step t. Both of them are
transformed into continuous vectors by randomly initialized embed-
ding layer, W ∈ RK×C2 and P ∈ R(t−1)×C2 . And we align the
acoustic and textual information by a multi-modal attention module.

Firstly, they are transformed into the same latent space, where
X is turned to X̂ ∈ RT×C , W becomes Ŵ ∈ RK×C and P be-
comes P̂ ∈ R(t−1)×C . Then the hidden states as intermediaries
connect X̂ , Ŵ and P̂ , by a attention mechanism that is shown in
Figure 2. Taking the acoustic information for example: given the
previous time step LSTM hidden state ht−1, we use a single fully-
connected layer followed by a softmax function to generate the at-
tention distributions α of acoustic features in time axis. Finally, the
gated linear unit (GLU) [17] is applied to the output of the attention
module, to control how much information should flow into the next
layer. Bellow are the definitions of acoustic attention module Ψx:

A = ReLU((X̂W T
i + bi)⊕ (ht−1W

T
s + bs)) (3)

α = softmax(AWn + bn) (4)

ox = GLU([X̂ ⊗α, ht−1]) (5)

where Ws ∈ RM×H , Wi ∈ RM×C , Wn ∈ RM are transfor-
mation matrixes that map acoustic features and hidden states to the
same dimension. Here, bs ∈ RM , bi ∈ RM , and bn ∈ R1. We
denote⊕ as the element-wise addition of a matrix and a vector, and
⊗ as the element-wise multiplication of a matrix and a vector. The
output ox ∈ RC . For GLU [17] operation, it implements a simple
gating mechanism over the output Y = [A,B] ∈ R2d:

GLU([A,B]) = A⊗ σ(B) (6)

Linear Linear Linear

Attention

Sigmoid

...

Figure 2: The architecture of the attention mechanism. F could
represent acoustic features or textual features.

where A ∈ Rd,B ∈ Rd are the inputs to the non-linearity, ⊗ is
the point-wise multiplication and the output GLU([A,B]) ∈ Rd is
half the size of Y . The gates σ(B) control which inputs A of the
current context are relevant [18].

As for the textual information, the same structure of attention
module is applied to keywords and previous words, and the outputs
are ow ∈ RC , op ∈ RC respectively. Finally, we add them with
ox. Then, they are sent to calculate hidden state in current time and
probabilities of each word:

h0 = GAP (X̂)

ht = LSTM(ht−1, Add(ox, ow, op))

vt = Linear(ht)

(7)

where h0 represents global information of acoustic features in the
time dimension. vt ∈ R|Σ| is a probability vector, and |Σ| is a
predefined dictionary including all words. Then, the current word
is chosen with the highest probability and added to previous words
P for the next iteration of LSTM.

2.3. Data Augmentation

In order to avoid over-fitting and increase data diversity, SpecAug-
ment [19], SpecAugment++ [20], Mixup [21] and Label smoothing
[22] are used in the training phase. For Mixup method, it is just
used in the training of the keyword encoder. And label smoothing
is just used while training the whole captioning model.

3. EXPERIMENT

Experiment setups: We choose N = 300 keywords for pre-
training encoder and the dimension of fully-connected layers C1

and C2 are 512. The decoder LSTM has 512 hidden units, word
embedding size is also set to 512. To mitigate overfitting, dropout
regularization is used in the word embedding layer with a rate of
0.5, and LSTM decoder layers with a rate of 0.25. In the phase of
training the encoder, firstly the CNN backbone is frozen up, trained
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Table 2: The performance of different models in Clotho [5] evaluation splits

Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr

Baseline [5] 0.378 0.119 0.050 0.017 0.263 0.078 0.075 0.028 0.051
Temporal attention model [10] 0.489 0.285 0.177 0.107 0.325 0.148 0.252 0.091 0.172

Transformer model [9] 0.534 0.343 0.230 0.151 0.356 0.160 0.346 0.108 0.227

KPE-MAD (w/o rl) 0.578 0.381 0.257 0.169 0.381 0.181 0.433 0.125 0.279
KPE-MAD (w/ rl) 0.579 0.384 0.261 0.172 0.386 0.181 0.436 0.128 0.282

KPE-MAD ensemble (w/o rl) 0.586 0.391 0.268 0.180 0.388 0.180 0.440 0.125 0.282
KPE-MAD ensemble (w/ rl) 0.590 0.395 0.272 0.183 0.394 0.182 0.453 0.129 0.291

by Adam optimizer with the initial learning rate of 1 × 10−3. We
then finetune the whole keyword encoder with the learning rate of
5 × 10−4. Next, the strategy of training the whole caption model
is the same as the keyword pre-trained encoder, and the difference
is that the multi-modal attention decoder is trained for 30 epochs
with the learning rate of 3× 10−4 and finetuned for 15 epochs with
the learning rate of 2× 10−5. Finally, we optimize CIDEr-D score
with SCST [11] for another 10 epochs with an initial learning rate
of 1 × 10−6. In the inference stage, we adopt beam search with a
beam size of 4 that is implemented to achieve best decoding perfor-
mance.

Experimental results: We compare performance of our model with
baseline model [5], a temporal attention model [10] and a trans-
former model [9]. The results are shown in table 2, which demon-
strate that our proposed model has a great improvement over pre-
vious models. Our single KPE-MAD model achieves a SPIDEr
score of 0.279. KPE-MAD(w/ scst) uses SCST [11] to optimize the
CIDEr-D and achieves 0.282. Then we ensemble three KPE-MAD
models which are trained with different seeds, with or without re-
inforcement learning, which achieve 0.282 and 0.291, respectively.
Comparing with other state-of-the-arts, our proposed method with
keyword pre-training encoder and multi-modal attention decoder
can obviously improve the performance of AAC.

4. CONCLUSION

The technical report describes our proposed KPE-MAD model,
which focuses on fusing multi-modal information by introducing
keyword pre-trained encoder and multi-modal attention decoder. In
the future work, we would concentrate on how to align the multi-
modal information more effectively to improve the performance of
the AAC.
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