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ABSTRACT

In this technical report, we describe the details of our submission
for DCASE2021 Task1b. This task focuses on audio-visual scene
classification. We use 1D deep convolutional neural network inte-
grated with three different acoustic features in our audio system, and
perform a two-stage fine-tuning on some pre-trained models such as
ResNet-50 and EfficientNet-b5 in our image system. In model-level
fusion, the extracted audio and image embeddings are concatenated
as input into a classifier. We also use decision-level fusion to make
our system more robust. On the official train/test setup of the de-
velopment dataset, our best single audio-visual system obtained a
0.159 log loss and 94.1% accuracy compared to 0.623 and 78.5%
for the audio-only system and 0.270 and 91.8% for the image-only
system. Our final fusion system could achieve a 0.143 log loss and
95.2% accuracy.

Index Terms— Acoustic scene classification, Image scene
classification, Convolutional neural network, Wavelet, Transfer
learning

1. INTRODUCTION

Acoustic scene classification (ASC) is aimed at classifying a test
recording into one of predefined acoustic scene classes. Detection
and Classification of Acoustic Scenes and Events (DCASE) chal-
lenge has organized ASC task for many years. DCASE2021 Task1b
[1] introduces an audio-visual dataset [2] for the first time. The goal
of this task turns into audio-visual scene classification (AVSC), us-
ing joint modeling of the audio and video content.

We describe our submitted systems for DCASE2021 Task1b in
this report. In our audio system, we use three different acoustic fea-
tures, Mel filter bank feature, scalogram extracted by wavelets and
bark filter bank feature. We feed these features into 1D deep convo-
lutional neural networks (DCNN) to extract audio embedding. We
use the center image frame to represent the 1-second long video,
as the baseline did. In our image system, we perform a two-stage
fine-tuning on some pre-trained models. The models pre-trained on
ImageNet [3] are first fine-tuned on Places365 [4], and then fine-
tuned on this task’s dataset. These models are used to extract im-
age embeddings. Then in model-level fusion, we concatenated au-
dio and image embeddings as input into a classifier. We also use
decision-level fusion for model ensemble. Our final fusion sys-
tem can achieve a 0.143 log loss and 95.2% accuracy using official
train/test split on the development dataset.

∗Pengyuan Zhang is the corresponding author.

The remainder of this report is organized as follows. Section
2 describes our classification systems. Section 3 shows our experi-
mental setup. Section 4 covers the results of our systems and makes
some discussion. Section 5 concludes this report.

2. CLASSIFICATION SYSTEMS

2.1. Audio Model

Our audio classifier is based on [5]. It’s a 1D deep convolutional
neural network. We make some improvements on this model. We
introduce residual learning [6] and change the model to be 1D-
ResNet. In each block, we use one 3×3 convolutional layer to ex-
tract features and an extra 1×1 convolutional layer to match input
and output’s dimensions. Table 1 shows our network architecture.
We use FC3’s output as audio embedding.

We chooses three different acoustic features as input of the clas-
sifier for getting robust results. We use Mel filter bank feature,
scalogram extracted by wavelets and bark filter bank feature which
are all transformed from raw waveform.

Table 1: The 1D-ResNet Classifier. The size of input is frames(B) ×
channels(c) × filters(n). The notation “c-3 Conv(pad=1,stride=1)-
2c-BN-ReLU” denotes a convolutional kernel with c input channels,
2c output channels and a size of 3, followed by batch normalization
and ReLU activation.

Layer Name Settings
Input Acoustic feature B×c×n

Block1 c-3 Conv(pad=0,stride=1)-2c-BN-ReLU
2 Pooling(pad=1,stride=2)

Block2 2c-3 Conv(pad=0,stride=1)-4c-BN-ReLU
2 Pooling(pad=1,stride=2)

Block3 4c-3 Conv(pad=0,stride=1)-8c-BN-ReLU
2 Pooling(pad=1,stride=2)

Block4 8c-3 Conv(pad=0,stride=1)-16c-BN-ReLU
2 Pooling(pad=1,stride=2)

Flatten and concatenate input as well as Block’s output
FC1 Linear (2048 units)-BN-ReLU-Dropout
FC2 Linear (1024 units)-BN-ReLU-Dropout
FC3 Linear (1024 units)-BN-ReLU

Output Linear (10 units)-Softmax
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2.2. Image Model

In this report, we use four different image models (ResNet[6] ,
EfficientNet[7], EfficientNetV2[8], Swin Transformer[9]) to extract
image embedding after pre-training and fine-tuning.

2.2.1. ResNet

ResNet[6] (Residual Network) is one of the most widely used CNN
feature extraction networks. Deep residual learning is introduced in
this network, which enables the network to maintain strong classi-
fication performance with increasing depth.

In this report, we choose ResNet-50. The network inputs are
224×224 images. The first layer is 7×7 convolution layer. Then
we use a maxpool layer. After that, we have convolution layers con-
sisting of four convolution blocks. The network ends with a global
average pooling, a 10-way fully-connected layer, and softmax.

2.2.2. EfficientNet

Improving the depth and width of the network and the resolution
of the input image can improve the accuracy of the ConvNets.
EfiicientNet[7] uses a simple and efficient compound coefficient to
enlarge the network from depth, width and resolution. The optimal
set of parameters (compound coefficients) can be obtained based on
neural structure search technology. And a new mobile-size baseline
was developed to evaluate the scaling approach in EfiicientNet.

In this report, we use EfficientNet-b5 model. In this model,
the resolution of the input image is 456×456. Its main building
block is mobile inverted bottleneck MBConv[10]. The network
ends with a 1×1 convolution layer, a pooling layer, and a 10-way
fully-connected layer.

2.2.3. EfficientNetV2

EfficientNetV2[8] is an upgrade to EfficientNet that aims to im-
prove training speed while maintaining efficient use of parameters.
EfficientNetV2 introduces Fused-MBConv[11] to the search space
based on EfficientNet; At the same time, the adaptive regularization
intensity adjustment mechanism is introduced for the progressive
learning.

In this report, We use EfficientNetV2-small model. Efficient-
NetV2 and EfficientNet are similar in structure, the difference is
that the first few layers of EfficientNetV2 are replaced by the Fused-
MBconv layer.

2.2.4. Swin Transformer

Swin Transformer[9] is a new vision Transformer, the representa-
tion is computed with shifted windows. The shifted windowing
scheme brings greater efficiency by limiting self-attention compu-
tation to non-overlapping local windows while also allowing for
cross-window connection. This hierarchical architecture has the
flexibility to model at various scales and has linear computational
complexity with respect to image size.

In this report, We use Swin Transformer tiny model. The net-
work inputs are 224×224 images, we use a patch size of 4×4 and
thus the feature dimension of each patch is 48. A linear embedding
layer is applied on this raw-valued feature to project it to an arbitrary
dimension. Four Transformer blocks with modified self-attention
computation (Swin Transformer blocks) are applied on these patch
tokens. A Swin Transformer block consists of a shifted window

based MSA module, followed by a 2-layer MLP with GELU nonlin-
earity in between. A LayerNorm (LN) layer is applied before each
MSA module and each MLP, and a residual connection is applied
after each module. The window size is set to 7 and the embedding
dimension is 96.

2.3. Audio-Visual Model

The target of multi-modal fusion is to integrate information from
different modalities. There are mainly three strategies for multi-
modal fusion, namely feature-level fusion, decision-level fusion and
model-level fusion. Feature-level fusion simply concatenates multi-
modal features into a joint feature vector at the input level. How-
ever, high-dimensional feature set may easily suffer from the prob-
lem of data sparseness[12]. In this report, we adopt a hybrid fusion
strategy comprised of model-level and decision-level fusion.

2.3.1. Model-level Fusion

Audio Embedding

Image ModelSelf Attention Block

Concatenate

Classifier

Transformed Image

Figure 1: Architecture of the model-level fusion.

In the model-level fusion, we retrieve the inputs before the
FC layer(also named embeddings) from audio and visual models.
As shown in Figure 1, we firstly use self-attention mechanism[13]
along time axis to transform audio embedding into a vector, and
concatenate it with the visual embedding. The classifier contains
two FC layers, followed by batch normalization and ReLU activa-
tion.

2.3.2. Decision-level Fusion

In the decision-level fusion, we retrieve the output probabilistic dis-
tribution of different model-level fusion models. Inspired by [5],
we perform unweighted fusion and weighted fusion on the outputs.
Different models are considered equally important in unweighted
fusion, while in weighted fusion, we perform grid search to select
the best weights of different models.

3. EXPERIMENTAL SETUP

3.1. Audio Experiments

3.1.1. Feature Extraction

The audio files in the development dataset are recorded in binau-
ral way using 48kHz sampling rate and have a fixed-length of 10
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seconds. For all features, we use average and difference channel
instead of left and right channel. To extract features, STFT was all
applied on the raw signal every 171ms over 512ms windows. For
log-mel energies and bark filter bank feature, we all set the num-
ber of filters to 256 so that their dimension was 59×2×256. For
scalogram, the total number of wavelet filters was set to 290 so its
dimension was 59×2×290. For 1-second audio, the demension of
features would be 6×2×256 or 6×2×290.

3.1.2. Model Training

We provided the same label as original audio to every frame of fea-
tures and trained the model at the frame level. When we predicted a
1-second audio’s scene, we calculated the average of the frame-wise
output from our classifier.

We used the official train/test split of the development dataset
to train and test our models. We used stochastic gradient descent
(SGD) with a cosine-decay-restart learning rate scheduler. The
maximun and mininum learning rates are 0.1 and 1e-5, respectively.
Before submitting our final system, we used all development data
to retrain our models.

Table 2: Results of experiments of our audio systems

Feature Model Log Loss Accuracy

log-mel DCNN 0.703 75.0%
1D-ResNet 0.652 77.5%

scalogram DCNN 0.661 76.6%
1D-ResNet 0.623 78.5%

bark DCNN 0.764 71.5%
1D-ResNet 0.794 71.5%

3.2. Image Experiments

We evaluate our models on the DCASE2021 development dataset
that consists of 10 classes, and we use ImageNet[3] for pre-training,
use Places365[4] for fine-tuning. This experiment does not build a
novel image scene classification model. We choose to use the model
that is most effective in the field of image classification and has the
appropriate number of model parameters. More complex models
may lead to overfitting.

For ResNet-50 and EfficientNet-b5 model, we directly use
the pre-trained weights which are pre-trained on ImageNet, then
fine-tune the weights on Places365, and fine-tune the weights on
DCASE2021 dataset. For the other two models, we firstly train
them on ImageNet to get the pre-trained weights by ourselves, then
fine-tune the weights on Places365, and fine-tune the weights on
DCASE2021 dataset. Finally, we use the models and weights to
extract the image embedding.

During the fine-tuning, we normalize all the images, and use
RandomResizedCrop, RandomHorizontalFlip, random adjustment
of image brightness and contrast and other data augmentation tricks.
In addition, we use Mixup[14] data augmentation for the images.
For all models, we use SGD as optimizer, and use cosine anneal-
ing and warm up to adjust learning rate. This strategy of adjusting
the learning rate can keep the deep stability of the model. We use
a weight decay of 1e-4 and a momentum of 0.9. We do not use
dropout.

Table 3: Results of experiments of our image systems

Model Log loss Accuracy

ResNet-50 0.346 90.7%
EffNet-b5 0.274 90.9%

EffNetV2-S 0.270 91.8%
SwinT 0.371 88.8%

3.3. Audio-Visual Experiments

In the model-level fusion, the audio embeddings and the weights
of trained image models are fixed, while the classifier is trainable.
Since the ten segments in the same 10-second video is similar, we
randomly choose one of them in every training epoch. We adopt
Adam as optimizer, with a fixed learning rate of 1e-5. Note that
we also use data augmentation for images in this stage to prevent
overfitting. Combining 4 image models and 3 acoustic features in
pair, we can derive 12 fusion models. In the decision-level fusion,
we firstly get the outputs of the 12 fusion models, then use grid
search of an interval of 0.05 in the weighted fusion.

3.4. External Data

This section is the list of external data sources used in our train-
ing. It contains ImageNet, Places365, EfficientNet and Pytorch pre-
trained Models on ImageNet, which are all included in the official
external data resources.

4. RESULTS AND DISCUSSION

In this section, we report and discuss the evaluation results collected
on the development dataset. Table 2 shows our audio systems’ re-
sults. Our best audio-only system is 1D-ResNet using scalogram
as input, achieving a 0.623 log loss and 78.5% accuracy. We also
discover that our 1D-ResNet performs better than DCNN on the
log-mel and scalogram features, but its log loss on bark is higher
than DCNN. So when we extracted audio embedding, we used 1D-
ResNet on log-mel and scalogram and DCNN on bark.

Table 4: Results of experiments of our audio-visual systems

ID V-Model A-Feature Log Loss Accuracy

1
ResNet-50

log-mel 0.189 93.7%
2 scalogram 0.187 94.1%
3 bark 0.211 93.0%

4
EffNet-b5

log-mel 0.159 94.1%
5 scalogram 0.170 93.5%
6 bark 0.197 93.3%

7
EffNetV2-S

log-mel 0.169 94.4%
8 scalogram 0.177 94.2%
9 bark 0.204 92.9%

10
SwinT

log-mel 0.210 91.8%
11 scalogram 0.217 91.7%
12 bark 0.244 91.1%

The results of our image systems are all listed in Table 3.
EffNetV2-S has the best results which obtains a 0.270 log loss and
91.8% accuracy. The results of EffNet-b5 are close to EffNetV2-S.
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Both ResNet-50 and SwinT achieve a log loss greater than 0.3 but
they are also smaller than audio systems’ results.

Table 4 shows the results of our audio-visual systems. The best
performance is achieved from the combination of EfficientNet-b5
and log-mel, with a 0.159 log loss and 94.1% accuracy. When we fix
the image model, we discover that log-mel and scalogram are much
better than bark. When we fix the acoustic feature, we discover
that although EfficientNetV2-S is the best model in image systems,
EfficientNet-b5 is the best image model in audio-visual systems.

In Table 5, we present the results of our final fusion systems.
In the grid search procedure, we discover that the weights of audio-
visual models comprised of ResNet-50 are all zeros, so we abandon
model 1,2,3. The weights distribution of No.1 fusion systems is
[0.5, 0, 0.25, 0.15, 0.1, 0], and the weights distribution of No.3
fusion systems is [0.4, 0, 0.15, 0.2, 0.15, 0, 0.1, 0, 0]. Our best
fusion system obtains a 0.143 log loss and 95.2% accuracy.

Table 5: Results of experiments of our fusion systems

No. Model ID Vote Method Log loss Accuracy

I 4,5,7,8,10,11 Weighted 0.144 95.0%
II 4,5,7,8,10,11 Unweighted 0.150 95.1%

III 4,5,6,7,8, Weighted 0.143 95.2%9,10,11,12

IV 4,5,6,7,8, Unweighted 0.151 95.1%9,10,11,12

5. CONCLUSION

This report describes our submission for DCASE2021 Task1b. Our
audio system uses 1D-ResNet and three different acoustic features.
A two-stage fine-tuning strategy is applied in our image system.
We concatenate the extracted audio and image embedding and feed
them into a classifier. Decision-level fusion is also used to make
our system more robust. From our evaluation of development data,
our final fusion system could achieve a 0.143 log loss and 95.2%
accuracy.
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