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ABSTRACT

The DCASE2021 Challenge Task2 is to develop an unsupervised
detection system of anomalous sounds for seven types of machines
under domain shifted conditions. A common challenge in the detec-
tion of anomalous sounds for machine is to identify the diversity of
malfunctioning sounds and the scarcity of malfunctioning sounds
samples between normal and anomalous condition. In this paper,
an unsupervised denoising-detection system is proposed to perform
this task by: (1) removing noise in each recording to obtain sig-
nal that is more related to this task; (2) training an overfitting model
by leveraging the information of sections in each machine type. The
experimental evaluation demonstrates that the proposed system out-
performs the provided baseline system across majority of machine
types in both source domain and target domain.

Index Terms— DCASE2021 Task2, Unsupervised anomalous
sound detection, Domain shifted conditions, Denoising, Overfitting

1. INTRODUCTION

Unsupervised anomalous detection [1, 2] detects anomalous sam-
ples under the condition that only normal samples have been pro-
vided during training phase. Such problems interests both academic
and industry, and has a wide range of applications. In this work, we
focus on detecting anomalous sounds for machine condition moni-
toring.

The anomalous sound detection is considered as an outlier de-
tection problem [3]. It first models the normal sound through a vari-
ety of methods such as neural networks. The deviation between the
model and the observed sound is then calculated, usually called an
anomaly score. When the anomaly score is higher than a predeter-
mined threshold, the observed sound is recognized as anomalous.

However, in the case of real-world factories, the sounds recog-
nized as anomalous by the above method are not always the real
anomalous that we concern about. It may be caused by the differ-
ences in operating speed, machine load, environmental noise, etc.
Therefore, we also aim to solve the problem of normal sounds being
incorrectly judged as anomalous due to changes within the normal
conditions.

In this work, all recordings include both the sound of a machine
as well as the environmental sounds of factoriy. After removing
the effects of environmental noise, the sounds caused by malfunc-
tion will become obvious. In addition to environmental noise, the
changes within the normal conditions are also regarded as noise.

Although the conditions have changed, normal recording is still nor-
mal recording. These changes are useless for detecting abnormali-
ties, that is, they do not relevant to our goal, so they can be regarded
as noise. We first train a denoising network by leveraging AudioSet
[4] to remove noise for all types of machines to obtain signal that
is more related to this task. Then, an overfitting model based on
MobileNetV2 [5] is trained for each type of machine by leveraging
the information of section. The output difference between normal
and abnormal will be expand due to the overfitting of normal data.
Section 2 describes techniques of our system. The experimental re-
sults are shown in Section 3. Finally, our conclusions are provided
in Section 4.

2. PROPOSED SYSTEM

An overview of the proposed system which is separated into pre-
train, training and test phases, as shown in Figure 1. The procedure
of the proposed method is described in detail in the following sec-
tions.

2.1. Audio processing and preparation

2.1.1. Audio denoising

A denoising network based on Deep Xi [6, 7] is used in the prepro-
cessing for removing noise from the original samples and reducing
the effect of conditions changes by treating it as a type of noise.

All recordings in dataset include both the sound of a machine
and its associated equipment as well as environmental sounds. The
conditions of source and target domains differ in terms of operating
speed, machine load, viscosity, heating temperature, environmental
noise, SNR, etc. In this paper, recording is regarded as a collection
of useful signal and noise, where noise includes the environmental
sounds and the changes within the normal conditions. Thus the goal
of the denoising network is to obtain signal that is more related to
this task.

In order to verify the effectiveness of denoising, a speech de-
noising network leveraging AudioSet is used for all types of ma-
chines rather than doing denoising works for machine types or sec-
tions separately. The noisy audio is first transformed to the fre-
quency domain, and the statistical characteristics of the noise spec-
trum are obtained. Then the noise spectrum is modified according
to the statistical characteristics to form a speech enhancement spec-
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Figure 1: System overview.

Figure 2: The algorithm of denoising.

trum, and finally transformed back to the time domain. The algo-
rithm is shown in Figure 2.

2.1.2. Audio preparation

For each machine type, linear combination of different section is
used to generate additional data.

There are 3 sections in development dataset, which are sec-
tion00, section01 and section02. Each section consists of data from
source domain and target domain. In each section, the changes
within the normal conditions are different from others. The addi-
tional data is a mixture of these section as shown in Table 1.

The additional data is similar but not identical to the original
data. Hence the boundary created by the proposed system for target
section will be more accurate in order to distinguish these section.

Table 1: Generation of additional data.

Section Combination

03 00 & 01
04 00 & 02
05 01 & 02

2.2. Feature extraction

Spectral features of auditory signals are used in our system. For
each 10s audio, setting the length of sample window to 64ms, hop
size to 32ms, number of filters to 128 and maximum frequency to
8000Hz to get Log-mel-spectrogram feature [8]. Then, 64 consec-
utive frames are used as input vector. Finally, for each audio, a
feature matrix whose shape is 251 × 64 × 128 × 1 is obtained.

2.3. Classifier

This part, we follow the DCASE2021 MobileNetV2 baseline but to
train an overfitting model for each type of machine by leveraging
the information of section.

The learning task is to create classification boundary for each
section. It identifies from which section the observed signal was
generated. In other words, it outputs the softmax value that is the
predicted probability for each section. Due to the overfitting of the
normal data, in test phase, the output of abnormal data will have a
large difference with that of normal one.

The off-the-shelf Keras implementation of MobileNetV2 is
used with the width multiplier parameter set to 0.5. The loss func-
tion is categorical cross-entropy and the optimization algorithm is
adam with 10−5 learning rate. The batch size is 32 with 50 epochs,
the split percentage of validation is 0.1 after data shuffle.

2.4. Outlier Detection

In this work, the anomaly score is calculated as the averaged nega-
tive logit of the predicted probabilities for the correct section, which
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can be described as:

Aθ (X) =
1

B

B∑
b=1

log

{
1− pθ(ϕt(b))

pθ(ϕt(b))

}
, (1)

where B is the num of frames, t(b) is the beginning frame index
of the b-th image, ϕ is the acoustic feature, and pθ is the softmax
output by MobileNetV2 for the correct section.

To determine the anomaly detection threshold, assuming Aθ
follows the gamma distribution. The parameters of the gamma dis-
tribution are estimated from the histogram of Aθ , and the anomaly
detection threshold is determined as the 90th percentile of the
gamma distribution. If Aθ for each test clip is greater than this
threshold, the clip is judged to be abnormal; if it is smaller, it is
judged to be normal.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

We evaluate the proposed system on the DCASE2021 Challenge
Task2 [9] development dataset. The dataset comprises parts of
MIMII DUE [10] and ToyADMOS2 [11], containing the normal
and abnormal sounds of seven real machines: Fan, Gearbox, Pump,
Slide rail, ToyCar, ToyTrain and Valve. Each recording is single-
channel, 10-second audio that includes both the sounds of a ma-
chine and its associated equipment as well as environmental sounds.
There are three sections for each machine type, and each section is a
complete set of training and test data. For each section, this dataset
provides (i) around 1000 clips of normal sounds in a source domain
for training; (ii) only three clips of normal sounds in a target domain
for training; (iii) around 100 clips each of normal and anomalous
sounds in the source domain for the test, and (iv) around 100 clips
each of normal and anomalous sounds in the target domain for the
test.

3.2. Evaluation metrics

To evaluate the performance of our method, the anomaly scores are
translated into AUC value and pAUC value. AUC [12] is defined
as the area enclosed by the coordinate axis under the ROC (Re-
ceiver Operating Characteristic) curve. pAUC is calculated as the
AUC over a low false-positive-rate (FPR) range [0, p]. In this task,
p = 0.1. The AUC and pAUC for each machine type, section, and
domain are defined as:

AUCm,m,d =
1

N−N+

N−∑
i=1

N+∑
j=1

H(Aθ(x+
j )−Aθ(x

−
i )), (2)

pAUCm,m,d =
1

bpN−cN+

bpN−c∑
i=1

N+∑
j=1

H(Aθ(x+
j )−Aθ(x

−
i )), (3)

where m represents the index of a machine type, n represents the
index of a section, d = {source, target} represents a domain, b·c
is the flooring function, andH(x) returns 1 when x > 0 and 0 other-
wise. Here, {x−i }

N−
i=1 and {x+

j }
N+

j=1 are normal and anomalous test
clips in the domain d in the section n in the machine type m, re-
spectively. N− and N+ are the numbers of normal and anomalous
test clips in the domain d in the section n in the machine type m,
respectively.

3.3. Experiment Results

Table 2: Detailed results for Fan.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 66.69 57.08 43.62 50.45 62.76 52.16
01 (source) 67.43 50.72 78.33 78.37 85.68 81.95
02 (source) 64.21 53.12 74.21 76.80 75.61 77.42
00 (target) 69.70 55.13 53.34 56.01 56.87 52.47
01 (target) 49.99 48.49 78.12 66.41 92.83 89.84
02 (target) 66.19 56.93 60.35 60.97 65.80 74.26

Arithmetic mean 64.03 53.58 64.66 64.84 73.26 71.35
Harmonic mean 63.24 53.38 61.56 63.02 71.10 68.22

Table 3: Detailed results for Gearbox.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 56.03 51.59 81.35 70.46 84.21 71.51
01 (source) 72.77 52.30 60.74 53.88 67.30 59.02
02 (source) 58.96 51.82 71.58 62.23 82.12 66.93
00 (target) 74.29 55.67 75.02 64.77 77.87 62.92
01 (target) 72.12 51.78 56.27 53.30 69.35 60.28
02 (target) 66.41 53.66 64.45 55.58 79.15 72.49

Arithmetic mean 66.76 52.80 68.24 60.03 76.67 66.03
Harmonic mean 65.97 52.76 66.70 59.16 76.14 65.57

Table 4: Detailed results for Pump.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 67.48 61.83 64.09 62.40 76.53 62.74
01 (source) 82.38 58.29 86.27 66.66 94.61 86.47
02 (source) 63.93 55.44 53.70 50.98 71.59 56.63
00 (target) 58.01 51.53 59.09 53.96 59.64 55.95
01 (target) 47.35 49.65 71.86 62.69 72.86 58.84
02 (target) 62.78 51.67 50.16 51.69 61.74 51.58

Arithmetic mean 63.66 54.74 64.20 58.06 72.83 62.04
Harmonic mean 61.92 54.41 61.89 57.37 71.18 60.35

In this part, performance of the proposed system is discussed
and compared to the DCASE2021 task 2 baseline system. All re-
sults in the domain d in the section n in the machine type m are
presented in Tables 2-8.

The AE baseline system models the normal features, so the ab-
normal features will have high reconstruction loss which is used as
anomaly score. The MobileNetV2 baseline system train a classi-
fier for 3 sections and the softmax value is used as the predicted
probability for each section.

According to the AUC results shown in Table 2-8, the proposed
system outperforms the baseline for all machines except ToyTrain.
For the machine type of Fan, Gearbox, Pump, Slide rail, ToyCar and
Valve, the arithmetic mean performance improved 8.6% (6.51%),
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Table 5: Detailed results for Slide.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 74.09 52.45 61.51 53.97 92.27 85.58
01 (source) 82.16 60.29 79.97 55.62 85.92 69.84
02 (source) 78.34 65.16 79.86 71.88 77.70 66.98
00 (target) 67.22 57.32 51.96 51.96 67.18 57.11
01 (target) 66.94 53.08 46.83 52.02 62.06 54.47
02 (target) 46.20 50.10 55.61 55.71 60.83 53.09

Arithmetic mean 69.16 56.40 62.62 56.86 74.33 64.51
Harmonic mean 66.74 55.94 59.26 56.00 72.48 62.74

Table 6: Detailed results for ToyCar.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 67.63 51.87 66.56 66.47 65.95 58.37
01 (source) 61.97 51.82 71.58 66.44 74.74 66.16
02 (source) 74.36 55.56 40.37 47.48 61.36 47.58
00 (target) 54.50 50.52 61.32 52.61 62.95 52.32
01 (target) 64.12 52.14 72.48 63.99 72.74 65.79
02 (target) 56.57 52.61 45.17 48.85 71.42 60.05

Arithmetic mean 63.19 52.42 59.58 57.64 68.19 58.38
Harmonic mean 62.49 52.36 56.04 56.37 67.82 57.56

Table 7: Detailed results for ToyTrain.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 72.67 69.38 69.84 54.43 50.96 55.00
01 (source) 72.65 62.52 64.79 54.09 72.86 58.79
02 (source) 69.91 47.48 69.28 47.66 62.00 48.74
00 (target) 56.07 50.62 46.28 51.27 42.67 49.16
01 (target) 51.13 48.60 53.38 49.60 44.88 49.05
02 (target) 55.57 50.79 51.42 53.40 57.60 53.68

Arithmetic mean 63.00 54.90 59.16 51.74 55.16 52.40
Harmonic mean 61.71 53.81 57.46 51.61 53.31 52.14

Table 8: Detailed results for Valve.

Section (Domain) AE MobileNetV2 Our system
AUC pAUC AUC pAUC AUC pAUC

00 (source) 50.34 50.82 58.34 54.97 62.42 59.53
01 (source) 53.52 49.33 53.57 50.09 61.30 49.21
02 (source) 59.91 51.96 56.13 51.69 77.47 62.53
00 (target) 47.12 48.68 52.19 51.54 58.97 62.89
01 (target) 56.39 53.88 68.59 57.83 59.15 53.32
02 (target) 55.16 48.97 53.58 50.86 69.56 52.68

Arithmetic mean 53.74 50.61 57.07 52.83 64.81 56.69
Harmonic mean 53.41 50.54 56.51 52.64 64.18 56.21

8.43% (6%), 8.63% (3.98%), 5.17% (7.65%), 5% (0.74%), 7.74%
(3.86%) in AUC (pAUC), respectively, compared with the best per-
forming baseline. Our system can obtain signal that is more related

to this task through denoising network and the overfitting model
performs this task better than two baseline systems. However, for
the machine type of ToyTrain, the arithmetic mean performance re-
duced 7.84% (2.5%) in AUC (pAUC) compared with the best per-
forming baseline, mainly because of the model is not overfitting as
other model by viewing the loss curve, due to the same setting of
training hyperparameter for all types machines.

Note that the target domain performance is better than source
domain performance in Fan01, Gearbox01 and ToyCar02, which
may be caused by denoising. More experiment will be done to ver-
ify it in future work.

4. SUBMISSIONS

We generated our last submission by combining the proposed sys-
tem and DCASE 2021 task 2 AE-baseline system. For machine tpye
of Fan, Gearbox, Pump, Slide rail, ToyCar and Valve, the proposed
system is used. For machine type of ToyTrain, the proposed system
has a litter bit performance than baseline system, so we follow the
baseline system but to train model for each section in machine type.

5. CONCLUSION

In this paper, a denoising-detection system is proposed to perform
DCASE 2021 Task 2 by: (1) removing noise in each recording to
obtain signal that is more related to this task; (2) training an overfit-
ting model by leveraging the information of section. The proposed
method significantly outperforms the baseline systems. In future
work, we will consider (1) the effectiveness of different denoising
methods and (2) the effectiveness of different classifiers to further
enhance the performance of proposed system.
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[12] J. M. Lobo, A. Jiménez-Valverde, and R. Real, “Auc: a mis-
leading measure of the performance of predictive distribution
models,” Global ecology and Biogeography, vol. 17, no. 2, pp.
145–151, 2008.


