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ABSTRACT 

This technical report describes an Automated Audio Captioning 
model for the Detection and Classification of Acoustic Scenes 
and Events (DCASE) 2023 Challenge, Task 6A. Utilizing wave 
gram and patchout as proposed in [1] and [2], respectively, we 
propose audio captioning using Wavegrams that contain fre-
quency information. We use pre-trained models trained using 
AudioSet data, to make word embedding. Our proposed se-
quence-to-sequence model consists of CNN14 encoder and a 
Transformer decoder. Experiments show that the proposed mod-
el achieves a SPIDEr score of 0.011. 

Index Terms— Automated Audio Captioning, Wavegram, 
pretraining, PASST 

1. INTRODUCTION 

Automated Audio Captioning (AAC) refers to the task that gen-
erating captions or transcripts for audio files. In recent years, 
there has been a growing interest in Audio Automated Caption-
ing. Thanks to the AAC Challenge organized by DCASE, nu-
merous methodologies have been proposed recently [3, 4], and 
we have paid particular attention to models using patchout.  

One of the primary obstacles in AAC is the insufficient 
amount of data available. To overcome this issue, several modern 
techniques employ pre-trained models such as PANNs and Res-
Net, resulting in significant enhancements in the overall perfor-
mance of the system. To address this challenge, Mei et al. [5] 
utilized a transformer encoder that was pre-trained on the audio 
tagging task. Similarly, Kouzelis et al. [6] employed patchout 
faSt Spectrogram Transformer (PASST) pre-trained on AudioSet 
data to overcome the lack of training data for AAC. Building on 
the pre-trained PASST-based transformer proposed by Kouzelis 
et al., we introduce an AAC model that utilizes Wavegram [1]. 

The remaining of this report is organized as follows. Section 2 
describes our framework and architecture. The experimental 

setup is given in Section 3. Section 4 presents the results on the 
evaluation set. Finally, conclusion is drawn in Section 5. 

2. SYSTEM DESCRIPTION 

Our proposed model's core architecture follows a conventional 
sequence-to-sequence structure, comprising two feature extrac-

tors, a CNN14 encoder and a Transformer decoder. There are 
two feature extractors in total. One of them is the system of one-
dimensional CNNs proposed by Kong et al. (2020) [1] for creat-
ing wavegrams, which can learn frequency information that is 
not present in log mel spectrograms. The other one is a PASST 
model pre-trained on Audio Set data, which extracts the textual 
input. The wavegrams are passed as inputs to the encoder, along 
with the log mel spectrograms that are created from the audio 
file. The textual input is used as input embeddings for the de-
coder. The encoder generates an abstract embedding sequence 
from the input, which is then passed to the decoder to produce an 
audio caption. 
 

2.1. Wavegram 

Wavegram, proposed by Kong et al. (2020) [1] is similar to log 
Mel spectrogram but learned using a neural network. Wavegram 
is designed to learn a time-frequency representation that is a 
modification of the Fourier transform and has a time and fre-
quency axis. It can learn frequency information that may be 
lacking in one-dimensional CNN systems and may improve over 
hand-crafted log Mel spectrograms by learning a new kind of 
time-frequency transform from data. To build a Wavegram, the 
authors first apply a one-dimensional CNN to the time-domain 
waveform. The CNN begins with a convolutional layer with a 
filter length of 11 and stride 5 to reduce the size of the input. 
This is followed by three convolutional blocks, each consisting 
of two convolutional layers with dilations of 1 and 2, respective-
ly, which are designed to increase the receptive field of the 
convolutional layers. Each convolutional block is followed by a 
downsampling layer with stride 4. By using the stride and 
downsampling three times, a 32 kHz audio recording is 
downsampled to 100 frames of features per second. 
 

2.2. Pretrained PASST on AudioSet 

Patch out faSt Spectrogram Transformer (PASST), as the name 
suggests, is a model that applies patching out to spectrogram 
transformers, proposed by Koutini et al. (2021) [2]. In addition 
to patch-out, PaSST also uses distinct embeddings for time and 
frequency positional encoding. This approach offers the benefit 
of separating time and frequency embeddings, which enables 
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handling inputs of varying lengths without the need for fine-
tuning or interpolation. PaSST has achieved state of the art 
performance in audio classification tasks. We used a PASST 
model pre-trained on the Audio Set data to create a logit vector 
using the 527 classes derived from the Audio Set data and used 
the logit as word embeddings for the transformer. 
 

2.3. Encoder and decoder 

Our model utilizes the CNN14 as an encoder and the transformer 
as a decoder, both of which were part of the baseline architecture. 
In addition to log mel spectrograms, we incorporated Wavegrams 
(concatenated with log mel spectrograms) as inputs to the encod-
er, following the approach proposed in the PANNS model. Fur-
thermore, we utilized logits extracted from a pretrained PASST 
model on Audioset data as input embeddings for the decoder.  
 

3. EXPERIMENTAL SETUP 

We used the Clotho dataset v2.1 as our main dataset for training 
and evaluation. The learning rate for our model was set to 1.0e-
05, and the training process was conducted over 20 epochs. 
ADAMW was used as the optimizer for the training process, and 
cross-entropy was chosen as the loss function. We selected the 
best model based on the lowest loss value on the validation 
dataset. 

4. RESULT 

The experimental results show that the model with a CNN14 
encoder and Transformer decoder achieved a SPIDER score of 
0.036 and SPIDEr-fl score of 0.011.  

 

5. CONCLUSION 

 
Through this report, we present the results of our submission for 
Task 6A of the DCASE 2023 Challenge. We propose a model 
that incorporates not only log Mel spectrograms, but also Wave-
gram and textual context. Our best model achieved an SPIDEr 
score of 0.011 on the evaluation dataset. 
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