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ABSTRACT

DCASE 2023 Task 6A, automated audio captioning (AAC), aims at
generating informative descriptions for various sounds from nature
and/or human activities. Our AAC system follows the sequence-to-
sequence (seq2seq) architecture. The audio encoder stack is com-
prised of a frozen BEATS Transformer followed by a 2-layer Con-
former. The BEATS module, which has been pretrained on both
masked audio token prediction and audio event classification, ex-
tracts fine-grained (i.e., ≈ 50 Hz) audio features, while the Con-
former downsamples and summarizes the audio features before they
are cross-attended by the BART text decoder. Besides the autore-
gressive negative log-likelihood (NLL) loss computed on decoder
outputs, we simultaneously apply an audio-text contrastive loss on
our encoder output to infuse language modality knowledge into
it. Specifically, we feed ground-truth captions into INSTRUCTOR
Transformer, a state-of-the-art text embedding model, and teach our
audio encoder to predict the INSTRUCTOR text embeddings through
InfoNCE loss. In addition, we leverage ChatGPT to produce cap-
tion mix-ups (i.e., grammatical and compact combinations of two
captions) which, together with the corresponding audio mixtures,
increases not only the amount but also the complexity and diversity
of our training data. During inference, we employ nucleus sampling
and a hybrid reranking algorithm that considers both likelihood and
audio-caption representation similarity. Combining our efforts, our
best single model and ensemble system achieve 0.326 and 0.336
SPIDEr-FL scores, respectively, on the Clotho (V2) evaluation split.

Index Terms— BEATS, Conformer, INSTRUCTOR, ChatGPT,
InfoNCE

1. INTRODUCTION

Automated audio captioning (AAC) is a multimodal task that de-
scribes an input audio clip using text. The description does not use
a fixed set of class labels or tags, but instead uses a free text natural
language description [1]. Research progress on AAC has acceler-
ated in recent years thanks to the yearly DCASE challenges, the
impressive performance of Transformer-based auto-regressive lan-
guage models, and the release of the open audio captioning datasets
Clotho [2, 3] and AudioCaps [4].

Our submission to the DCASE 2023 AAC task is in line with
the macro-trend in machine learning where models pretrained on

large datasets are actively utilized. Specifically, we use pretrained
models in multiple ways to make the quality of audio representa-
tions better match the captioning task. We start with audio features
extracted from a Bidirectional Encoder representation from Audio
Transformers (BEATs) [5] model, a state-of-the-art audio classifi-
cation model which is pretrained on AudioSet. We also use the pre-
trained INSTRUCTOR Transformer [6] to obtain embeddings for the
ground-truth captions, and train our audio encoder outputs to predict
these INSTRUCTOR embeddings as an additional task. Following
the pretrained BEATs module, we use a 2-layer Conformer [7, 8] to
downsample the audio features. Then, following the typical seq2seq
architecture, a BART text decoder attends to the downsampled au-
dio features using cross-attention.

We use ChatGPT [9] to combine the captions from two mixed
audio clips in a much more natural way compared to simple con-
catenation. This idea is inspired by previous work on AAC and
text-to-audio synthesis, which performs data augmentation by mix-
ing multiple audio signal inputs and their corresponding text labels.
The text label mixing is done by either combining the correspond-
ing caption embeddings [10], or by simply concatenating the cap-
tions (or concatenating the keywords from the captions) [11]. In our
proposed approach with ChatGPT, we take that concept one step
further. Finally, during inference, we observed that using nucleus
sampling to generate captions in the decoder would sometimes pro-
duce captions that significantly outperformed beam search in terms
of SPIDEr-FL. Therefore, we use a hybrid reranking algorithm that
combines likelihood and audio-caption representation similarity to
select the nucleus sampling output.

2. METHOD

2.1. Network Architecture and Main Loss Function

We utilize BEATs [5] as our main audio encoder. The BEATs mod-
ule takes a 16 kHz audio waveform as input, converts the wave-
form into a mel spectrogram with 10-millisecond hop size, splits the
spectrogram into 2D patches, and finally transforms the patches into
a sequence of latent representations through 12 self-attention (i.e.,
Transformer) layers. Compared to the PANN [13] audio encoder
used in the official baseline and past winning systems [14, 15, 16],
BEATs comes with the following modifications:

• Network: BEATs features a Transformer backbone, while PANN
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Figure 1: Overview of our Transformer-based captioning system.
We utilize a frozen BEATs [5] Transformer (pretrained on masked
audio language modeling and multilabel audio classification) to ex-
tract audio features from the mel spectrogram. On top of BEATs, we
attach a randomly initialized Conformer [7] to further contextualize
and downsample the audio features. Then, a BART [12] text de-
coder cross-attends to the contextualized audio features and gener-
ates the caption autoregressively. To give the BEATs-Conformer en-
coder stack better text-modality guidance, we extract the captions’
sentence embeddings from a state-of-the-art embedding model: IN-
STRUCTOR [6]. An InfoNCE auxiliary loss is applied on the Con-
former’s output representation (mean-pooled along the time dimen-
sion) to train it to mimic the corresponding caption’s INSTRUCTOR
sentence embedding.

is based on convolutional neural network (CNN).

• Pretraining objectives: While both BEATs and PANN are pre-
trained on AudioSet [17], a general-domain, large-scale audio
dataset, BEATs is first trained on masked audio language mod-
eling, and then on multilabel audio classification, and PANN is
only trained on the latter.

• Resolution: BEATs outputs audio features at about 50 Hz. This
is up from around 1 Hz for PANN.

Due to these differences, and the better performance of BEATs on
AudioSet multilabel classification (50.6% vs. 43.9% mean aver-
age precision), we believe that BEATs could provide higher-quality,
more fine-grained features for the audio captioning task. In our pi-
lot experiments, we try either to finetune the BEATs module or to
keep it frozen. Both options lead to similar SPIDEr-FL score, so we
simply freeze BEATs to reduce computation and memory footprint.

Given that the BEATs module is frozen, to enable further
training on the audio representations (more details to come in Sec-
tion 2.2), we attach a convolutional downsampling layer, followed
by a 2-layer1 Conformer [7] on top of the BEATs module. These ad-
ditional layers further contextualize the audio features, and reduce
the text decoder’s workload on summarizing the audio features.

Following the DCASE 2023 official baseline, we adopt a 6-
layer BART Transformer decoder [12] to generate captions. We use
the default BART text tokenizer with a 50K vocabulary size, and
train the BART’s weights from scratch. The BART decoder cross-

1The number of layers is determined by hyperparameter search.

attends to the Conformer’s output representations and self-attends
to the historical caption tokens to generate the next caption token
autoregressively. The main loss function to our BEATs-BART cap-
tioning model, which is applied on the BART’s output distributions,
is the negative log-likelihood (NLL) of audio captions, i.e.,

LNLL = E(x,y)∈Dtrain

[
− log p(y |x)

]
(1)

= E(x,y)∈Dtrain

[ |y|∑
n=1

− log p(yn|y1:n−1;x)
]
, (2)

where Dtrain is the training dataset, x is the input audio waveform,
y is an audio caption, and yn is the nth token in the caption. A
schematic overview of our captioning model is depicted in Fig. 1.

2.2. INSTRUCTOR Embedding Supervision

Past top-performing submissions in the DCASE captioning chal-
lenge have proposed a number of ways to infuse text-related knowl-
edge into the audio (i.e., encoder) representations. For example,
[14] pretrained the PANN audio encoder with an audio-caption In-
foNCE [18] contrastive loss, and [15] added a feed-forward network
on top of PANN to predict keywords extracted from the captions,
and trained the captioning model in a multitask fashion.

In our submissions, we strive to combine the benefits of both
representation learning and multitask training. In particular, we
leverage the INSTRUCTOR-XL2 Transformer [6] to fetch the text
embedding for the audio captions and supervise our encoder stack
with them. INSTRUCTOR is based on a pretrained T5 [19] text
encoder, that is then finetuned using InfoNCE loss [18] on a va-
riety of natural language processing (NLP) tasks, such as classi-
fication, reranking, summarization, and text quality evaluation, to
learn sentence-level text embeddings. Task- and domain-specific
prompts are prepended to the input text as conditions, e.g., “Rep-
resent the Medicine statement for retrieval:” is used for medical
text, hence the name INSTRUCTOR. In the Massive Text Embed-
ding Benchmark (MTEB) [20], INSTRUCTOR-XL is currently the
state of the art on summarization and reranking tasks,3 which are
closely related to audio captioning.

In our use case, we place “Represent the audio caption:” as the
prompt to the (frozen) INSTRUCTOR to fetch sentence embeddings
from ground-truth captions. On our BEATs-Conformer encoder
stack, we perform mean-pooling along the timestep dimension to
obtain a single audio embedding for the input waveform. We denote
the audio embedding and the INSTRUCTOR caption embedding by
a and c respectively. An auxiliary InfoNCE loss is computed using
in-batch negative samples:

sim(a, c) = exp
( a⊤c

||a|| ||c|| ·
1

τ

)
, (3)

LInfoNCE a = EB⊂Dtrain

[ |B|∑
i=1

− log
sim(ai, ci)∑|B|
j sim(aj , ci)

]
, (4)

LInfoNCE c = EB⊂Dtrain

[ |B|∑
i=1

− log
sim(ai, ci)∑|B|
j sim(ai, cj)

]
, (5)

LInfoNCE =
1

2
(LInfoNCE a + LInfoNCE c) , (6)

2‘XL’ describes the size of the network—it has 1.5B parameters.
3huggingface.co/spaces/mteb/leaderboard
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Table 1: Randomly chosen samples of ChatGPT mix-up augmentations. In general, ChatGPT is able to faithfully reflect all content in the two
input captions grammatically, and sometimes exhibits creativity in sentence structuring and vocabulary choice.

Clotho caption #1 Clotho caption #2 ChatGPT mix-up

water flowing over some rocks throughout a
creek

in the distance fireworks pop and crackle con-
stantly as they are set off

a serene creek babbles over rocks as distant fireworks pop and crackle
in celebration

a muffled object is dragged along a surface in a
room that echoes

several dogs barking with many birds making
noise in the background

dogs bark in a room that echoes while a muffled object is dragged as
birds chirp faintly in the background

a dog is growling rather furiously at something someone is using a washing machine to do their
laundry

a persons laundry spins in a washing machine as a dog growls fero-
ciously somewhere nearby

a man is talking over a radio device water cascades into a sink while a person cleans
their face

a mans voice crackles over a radio as water splashes into a sink during
someones routine facial cleanse

a gate squeals as it sways while birds chirp in the
background

a machine is whirring loudly at first and then
slowly shuts off

as the gate sways and creaks a nearby machine loudly whirs before
slowly powering down amidst chirping birds

where sim(·, ·) is the exponentiated temperature-scaled cosine sim-
ilarity, τ is the temperature hyperparameter,4 B denotes a sampled
mini-batch, and i, j index samples in the mini-batch. The total mul-
titask loss L used to train our model can hence be written as:

L = LNLL + αLInfoNCE , (7)

where α is a hyperparameter and we find α = 1 works well.

2.3. ChatGPT Mix-up Augmentation

Since the Clotho [3] dataset has a rather limited size, historically,
challenge participants [14, 15, 16, 21] have utilized SpecAugment
[22] and external captioning dataset like AudioCaps [4] to pre-
train the captioning model. In addition to the two aforementioned
data augmentation measures, we leverage a large language model
(LLM), ChatGPT [9], to ‘mix-up’ [23, 24] pairs of captions in the
Clotho dataset, and create more complex and diverse in-domain
training data. Specifically, we mix-up captions with different corre-
sponding audio clips, rather than two out of the 5 captions for the
same audio. The corresponding audio waveforms are also mixed up
to ensure consistency between audio and mixed-up captions.

We collect such mix-up augmentations using the public Chat-
GPT API.5 In the prompt, we ask ChatGPT to “Generate a mix of
the following two audio captions, and keep the generation under
25 words:”, and then provide it with two randomly sampled cap-
tions from Clotho. As the maximum caption length in Clotho is 20
words, we instruct ChatGPT to keep the output length less than 25
words. We use the FENSE disfluency detector [25] in the SPIDEr-
FL metric to filter out poor examples6. The remaining ChatGPT
mix-ups are used together with AudioCaps dataset to pretrain our
captioning model. Mix-up of audio waveforms is more straightfor-
ward, we simply follow the algorithm used in WavLM [26] to scale
the two waveforms to ensure their relative root-mean-square energy
is within ±5 dB before adding them together.7

Table 1 displays a few examples of ChatGPT-generated mix-
ups. We try including either 50K or 100K ChatGPT mix-ups, and

4Generally speaking, a higher temperature makes the contrastive objec-
tive more challenging, as the distribution is made less peaky. We perform
a search in τ = {0.03, 0.07, 0.2, 0.5, 1.0} and find τ = 0.5 works the best.
Note that the DCASE official baseline uses τ = 0.07.

5ChatGPT API guide: platform.openai.com/docs/guides/
chat/introduction

6Less than 1% of ChatGPT mix-ups are detected as disfluent.
7We also attempt loudness normalization via pyloudnorm to scale the

waveforms to a peak energy of –15 to –5 dBFS (randomly chosen from uni-
form distribution), but no SPIDEr-FL improvement is seen with this strategy.

using 50K yields a higher SPIDEr-FL score. The cost for generating
50K mix-ups is roughly $8.50.

2.4. Sampling and Reranking

In past DCASE challenges, the most commonly used decoding al-
gorithm for the audio captioning task has been beam search [14, 15,
16]. However, in our pilot experiments, we find that around 1/3 of
generations using nucleus sampling [27] (with temperature 0.5 and
cumulative distribution truncation point i.e., top-p of 0.95) scores
higher in terms of SPIDEr-FL than that using beam search, reveal-
ing the potential advantage of a sampling-then-reranking approach.

To ‘pick the right sample’ with nucleus sampling, we propose
a hybrid reranking algorithm that utilizes again the knowledge of
both our learned audio encoder stack and our text decoder. The two
reranking metrics we consider are:
• Caption log-likelihood: We feed the input waveform x and the

generated caption ŷ into our captioning model to directly com-
pute log p(ŷ |x) =

∑|ŷ|
n log p(ŷn | ŷ1:n−1;x).

• Audio-caption representation similarity: We feed the gener-
ated caption ŷ into the INSTRUCTOR model to get its text embed-
ding ĉ, and fetch the audio embedding a of the input waveform
x from our trained audio encoder stack. Then, we compute the
cosine similarity between the aforementioned text and audio em-
beddings, i.e., (a⊤ĉ) / (||a|| ||ĉ||).

We tune the weights of the two reranking metrics on the Clotho
validation split, and find {0.3, 0.7} for log-likelihood and repre-
sentation similarity, respectively, performs well across all models.
To strike a balance between diversity and compute-efficiency, we
generate 50 independent captions for each test case. Additionally,
we leverage the FENSE evaluator [25] to filter out generations
that would be punished on the SPIDEr-FL metric. Generally, us-
ing nucleus sampling and our hybrid reranking method leads to a
0.01∼0.02 SPIDEr-FL gain over beam search.

3. SUBMISSIONS AND RESULTS

In total, we submit 4 captioning systems, with submission #1 be-
ing a single model, and submissions #2, #3 and #4 being ensemble
models. As the architecture and techniques proposed in Sections 2.1
through 2.4 are orthogonal to each other, we combine all of them in
our submissions. Important characteristics of our submissions and
results on the Clotho evaluation split can be found in Table 2.

For our submission #1, we first pretrain the model on the com-
bined dataset of AudioCaps [4] and 50K ChatGPT mix-ups from
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Table 2: Characteristics and performance (on Clotho evaluation split) of our submissions. All metrics are the higher the better. All systems
use BART as the text decoder. Our systems leverage AudioCaps as extra data while the DCASE baseline does not. ‘Aux. loss’ is applied to
train the audio encoder to predict the sentence embedding of corresponding captions.

Characteristics Performance metrics
# models Audio encoder ChatGPT mix-up Aux. loss Weighted ensemble METEOR CIDEr SPICE SPIDEr SPIDEr-FL

Single DCASE baseline 1 PANN ✗ InfoNCE n.a. .177 .420 .119 .270 .261
Submission #1 1 BEATs + Conformer ✓ InfoNCE n.a. .193 .506 .146 .326 .326

Ensemble
Submission #2 7 BEATs + Conformer ✓/ ✗ InfoNCE / cos sim ✗ .198 .510 .147 .329 .329
Submission #3 20 BEATs + Conformer ✓ InfoNCE ✓ .197 .525 .147 .336 .336
Submission #4 20 BEATs + Conformer ✓ InfoNCE ✗ .197 .505 .145 .325 .325

Clotho [3] for 10 epochs (about 12K gradient steps), and then fine-
tune it on the Clotho development split for 40 epochs (or 1.2K
steps). The optimizer adopted is AdamW [28], with a 2e–4 learning
rate for the ‘AudioCaps+ChatGPT mix-up’ pretraining stage, and
2e–5 for the Clotho finetuning stage. As the Conformer attention
is the primary memory bottleneck,8 there is a tradeoff between the
largest batch size we could use and the downsampling rate for the
Conv1D layer between our BEATs and Conformer modules—using
less downsampling gives the model finer-grained audio features, but
the smaller batch size allowed would make the gradient less reliable.
Through experiments, we eventually settle on 3x downsampling rate
and a batch size of 32 for submission #1. We train the model on two
NVIDIA A100 (40G) GPUs, and the two training stages take around
6 and 3 hours respectively. Early stopping on validation accuracy
(with 5 epochs of patience) is employed.

For our ensemble system submission #2, we try to prioritize
diversity across the 7 component models in the following aspects:

• Attention architecture: In Conformer, we use either the con-
ventional quadratic-complexity attention, or the Performer atten-
tion [29], which provably approximates softmax attention in lin-
ear time and memory. Performer attention enables us to use batch
size 48 instead of 32.

• Downsampling rate: Either 2x or 3x downsampling rate is used
in the Conv1D layer between BEATs and Conformer.

• Training data: In the pretraining stage, some of the compo-
nent models do not use mix-up augmentations from ChatGPT,
but rather only the AudioCaps dataset.

• Auxiliary loss: Some component models simply learn to predict
INSTRUCTOR text embeddings through cosine similarity maxi-
mization, instead of using InfoNCE. Cosine similarity maximiza-
tion can be thought of as InfoNCE minimization without the re-
pelling force from negative samples.

We ensemble the models by simply averaging the BART text de-
coder output distributions.

For submissions #3 and #4, we include 4 top-performing model
configurations from submission #2, and attempt to leverage data
from Clotho validation split using cross validation. Specifically, we
first combine the Clotho development and validation splits (which
contain 3.9K and 1.0K samples respectively), and repartition the
combined data into 5 equal-sized folds. Then, we can train a model
using folds 1∼4, validating it on the 5th fold, another model on folds
2∼5, validating it on the 1st fold, and so on. This way, we will have
5 models which have collectively seen all data in the Clotho devel-
opment and validation splits, expanding the dataset size by roughly
25%. Since we consider 4 model configurations, the total number
of models is 4× 5 = 20. The only difference between submissions

8due to the long sequence length of audio features

#3 and #4 is that for submission #3, we additionally train the com-
bination weights of BART output distributions rather than simply
averaging them.

The performance metrics in Table 2 show that our submissions
outperform the DCASE baseline by a considerable margin, and per-
form on par with or slightly better than the DCASE 2022 winning
system [14], which achieved a 0.325 SPIDEr score, without using
reinforcement learning [30] to directly optimize the CIDEr metric.

4. CONCLUSION AND FUTURE WORK

In the DCASE 2023 challenge, we strived to improve audio cap-
tioning models from multiple aspects. We employed the BEATs
Transformer to extract more fine-grained audio features. We then
utilized the INSTRUCTOR embedding model and multitask learning
to provide rich language-modality guidance to our audio encoder
stack. ChatGPT was also leveraged to generate faithful and flu-
ent caption mix-ups which, when paired with mix-ups in the audio
domain, increased the size, diversity, and complexity of our train-
ing data. Finally, nucleus sampling and a hybrid reranking method
once again utilized our model’s capabilities and led to a healthy ad-
ditional performance gain.

Future endeavors may explore feature extractors that are pre-
trained with larger amounts of data [31] or multimodal supervi-
sion [32]. Reinforcement learning can also be included into our
pipeline to optimize captioning metrics that correlates well with hu-
man judgment [33] without introducing fluency issues [34].
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