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ABSTRACT

This technical report serves as our submission to Task 6 of the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
2023 challenge. Our system, as described in this report, consists of
two sub-systems designed for the respective sub-tasks: automated
audio captioning (task A) and text-to-audio retrieval (task B).

The text-to-audio retrieval system employs a tri-encoder archi-
tecture, where pre-trained audio and text encoders are trained to
establish relationships. Additionally, an extra pre-trained image en-
coder is utilized to enhance the connections between these encoders.
Through this retrieval process, the audio encoder can be considered
a pre-trained encoder for task A.

Furthermore, we employ multi-task training with audio tagging
during the retrieval phase to strengthen the encoder for audio cap-
tioning. Pre-training is conducted using AudioCaps and a portion
of WavCaps datasets, and both sub-systems are subsequently fine-
tuned on Clotho dataset.

Experimental results demonstrate that our model achieves a
SPIDEr score of 0.305 and a SPIDEr-FL score of 0.294 for cap-
tioning, as well as an mAP (mean Average Precision) of 0.321 for
text-to-audio retrieval.

Index Terms— audio captioning, text-to-audio retrieval, pre-
training, multi-task learning

1. INTRODUCTION

Audio captioning refers to the task of generating textual descrip-
tions or captions for audio content. Similar to image captioning,
which generates descriptions for images, audio captioning aims to
provide textual representations that capture the key information,
context, and semantic meaning of audio signals. Notable initial
works in the field include [1, 2, 3], which proposed datasets and
baselines that led to the creation of Task 6 within DCASE.

In recent years, audio captioning has gained increasing atten-
tion due to its potential applications in various domains, such as
enhancing accessibility for individuals with hearing impairments
by providing textual representations of audio content. More re-
cently, audio-caption and its respective datasets have been the foun-
dation of contrastive language audio pretraining (CLAP), with no-
table works being [4, 5, 6]. Furthermore, audio captioning serves
as a valuable tool for audio-based media retrieval, enabling users to
search and retrieve specific audio content using text-based queries
or vice versa.

Audio caption is commonly modelled as a sequence-to-
sequence problem: Given an audio signal, the goal is to generate

a sentence that accurately describes the audio contents. Most suc-
cessful approaches for audio captioning are based on an encoder-
decoder architecture. An audio encoder is first fed the audio signal,
which predicts rich, high-level embeddings, which are then further
fed into a decoder that produces text. There has been a multitude
of audio encoders [7, 8] and text-decoders [9, 10] investigated. Fur-
ther, novel evaluation metrics that accurately reflect an audio cap-
tion model’s performance have also been proposed [11, 12].

This paper is structured as follows. In Section 2 we introduce
our methodology. Then in Section 3 we display our experimental
setup and show the corresponding results in Section 4. Finally, Sec-
tion 5 concludes the work.

2. METHOD

2.1. Text-to-Audio Retrieval
2.1.1. Contrastive Language—Audio Pre-training (CLAP)

The bi-encoder architecture is adapted from last year’s winner [13],
which consisting of an audio encoder F 4, a text encoder Er and
a cross-modal matching module. The encoders can transform an
audio-text pair (/4,7) into an embedding pair (eq, e;), then the
cross-modal matching modules M atch 4 and M atch g will project
them into a common space:

ea = Fa(A),

er = En(T),

a = Matcha(ea),
t = Matchr(e:).

(€]

The similarity score (cosine similarity in this system) between
a and ¢ can be obtained by:

ap - tg
llapll - Nt

The InfoNCE loss [14] is adopted as the training loss. This con-
trastive training loss between the similarity scores and the ground
truth labels can be calculated as below:

(@3]
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where 7 is the trainable temperature.
In our work, the model architectures are the same as Xu’s [13],
including CNN14 in PANNs, BERT [15] for Er.

2.1.2. Contrastive Language—Audio-Image Pre-training (CLA-
IP)

In this paper, we utilized the stable diffusion model to gen-
erate image files corresponding to the training text. Building
upon the CLAP training framework, we incorporated a contrastive
loss between text embeddings and image embeddings to com-
plement the learning of contrastive loss between text and audio.
For image embedding extraction, we primarily employed the Vi-
sion Transformer[16, 17, 18] model from the LAION open-source
repository[6].

The similarity score between text and image can be obtained
the same as Formula 2, then the whole loss function for CLAIP can
be calculate by:

exp(sz~7(i,1)/T)

£1—>T _
: = ~ — ,
> j=16xp(sz~7 (4, 5)/7)

i - log

| X 4
I—T
Lcrarp = Lorap + N ;(ﬂl ).

2.2. Audio Captioning
2.2.1. Audio Captioning with CLAP or CLAIP

The audio encoder obtained in Section 2.1 can be regarded as a fea-
ture extractor in audio captioning, which is denoted by E 4. Then,
an audio encoder E'ac, a decoder D 4c and a fully connected clas-
sifier form the trainable layers to output the word probability.

ea = Ea(A)

eac = Fac(ea)
y = D(eqe, WE(w))
o = Classifier(y)

&)

where the word embedding layer W E' extracts the embedding by
the paired word w.

Cross entropy loss between the estimated word probability p
and ground truth word wy is adopted to optimize the entire model
except for E 4, which is frozen while training.

T
1
Lac = -7 ;logp(wt) 6)

Pre-trained E/ 45 in 2.1 are adopted as feature extractors, a three-
layer bidirectional gated recurrent unit (GRU) is taken as E4c, and
a two-layer Transformer is taken as D 4c. Besides, we also tried
to replace the E, by the optimized one for this task described in
Section 2.2.2.

2.2.2. CLAP with Audio Tagging for Audio Captioning

For the audio captioning feature extractor, we adopted audio en-
coders after performing audio-to-text retrieval. However, the re-
trieval training process focuses on establishing a relationship be-
tween audio embeddings and text embeddings, while overlooking
the classification ability of the audio tagging model. Therefore, we
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propose incorporating multi-task training with audio tagging along-
side the retrieval training. This approach allows us to maintain
stronger classification capabilities while improving the embedding
relationships.

The pre-trained audio-encoder has the most classification capa-
bilities in the retrieval training process, so, we just need to reduce
the difference between the output scores of the pre-trained encoder
(scorespre) and the training encoder (scoresi,):

Lrac = 108Sreg(scoresyy, scorespre ), o

Lcorap-rac = Lopap + ALrac.

In the equation, loss,e4 represents the regularization loss function,
which can be either the Mean Absolute Error (MAE) or the Mean
Squared Logarithmic Error Loss (MSLE). The parameter A denotes
the weight assigned to the regularization loss.

Using the MSLE loss is advantageous because it operates on
the same logarithmic scale as the InfoNCE loss used in retrieval
processing. This compatibility between the losses leads to improved
training performance and better overall results.

Furthermore, we explored the integration of the multi-task
training method with CLAIP, with the objective of further enhanc-
ing the overall performance. The rationale behind this approach is
to leverage the benefits of both techniques synergistically:

Loparp—-tac = Lorparp + Arac (8)

3. EXPERIMENTS

3.1. Data

Clotho v2.1[19] is used as the dataset for both sub-tasks. We re-split
the original training and validation sets into new subsets ina 9 : 1
ratio. Then, there are 4395, 489, 1045 audio clips in the training,
validation and evaluation sets. The re-splitting is used to get more
data for training. Whole of pre-trained models mentioned below
will be fine-tuned on Clotho.

For both sub-tasks, we use more public audio captioning
datasets, including Clotho, AudioCaps[20], MACS[21], and part of
WavCaps[22].

For CLAP and multi-task CLAP retrieval pre-training process,
we use Clotho, AudioCaps, MACS and the entire Freesound part
in WavCaps as our dataset. For CLAIP retrieval process, we use
Clotho, AudioCaps, MACS and 40,000 Freesound clips, 50,000 au-
dio_sl clips in WavCaps as our dataset.

For captioning pre-training process, we use Clotho, and the
whole Freesound part in WavCaps as our dataset.

3.2. Text-to-audio Retrieval

For text-to-audio retrieval task, CLAP, CLAP-TAG, and CLAIP
architecture are all trained with a pre-training process and a fine-
tuning process. During both pre-training and fine-tuning stages, the
retrieval model undergoes 20 epochs of training with a batch size
of 128. The parameters of both the audio encoder and text encoder
are initialized with pre-trained values, which warrants the use of a
lower learning rate. For optimization, the Adam optimizer is em-
ployed. The learning rate undergoes a linear warm-up during the
first epoch and subsequently follows a decay pattern using a cosine
scheduler. In the pre-training phase, the maximum learning rate is
setto 1 x 10™*, while during fine-tuning, it is adjusted to 2 x 107>,
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e Systeml1: Ensemble the four top-performing models based on
the mAP@ 10 metric on the evaluation set.

e System2: Ensemble the four top-performing models based on
the R@ 10 metric on the evaluation set.

e System3: Ensemble the ten top-performing models based on
the mAP@ 10 metric on the evaluation set.

e System4: Single model that performs the best on the mAP@10
metric.

3.3. Audio Captioning

For audio captioning task, we use audio encoders after audio-to-text
retrieval as the pre-training feature extractors. The whole captioning
model except the feature extractor is pre-trained for 10 epochs on
the freesound and Clotho dataset, where the batch size is 32, Adam
is used as the optimizer, and the learning rate is up to 5 x 107%.
Then, we fine-tune the model for 15 epochs with the same settings
on Clotho. During inference, beam search with a size of 3 is used.
Different models are ensembled to further enhance the performance.
Our submission setups are as follows:

e Systeml: Ensemble of the best model with multi-task training
CLAP and the best model with original CLAP.

e System?2: A single model with multi-task training CLAP.

e System3: Ensemble of six models with multi-task training
CLAP, of which three adopt L1 loss and three adopt MSLE
loss.

e System4: Ensemble of system3 and the best model with
CLAIP.

4. RESULTS

4.1. Text-to-audio Retrieval

The performance of text-to-audio retrieval is presented in Table 1.
Systeml1 is an ensemble composed of the top-performing models,
selected based on the mAP@10 metric on the development set.
These four models are carefully chosen from the four best per-
forming models of CLAIP, CLAP-TAG, and CLAP. The ensemble
achieves an impressive result of 0.321 mAP@10. On the other hand,
System?2 is an ensemble of the top-performing models based on the
R@10 metric on the development set. However, the obtained re-
sults are not satisfactory, indicating that the ensemble did not lead
to improved performance. Moving on to System3, it comprises an
ensemble of the ten top-performing models based on the mAP@10
metric on the development set. Surprisingly, it is observed that in-
corporating more models into the ensemble does not necessarily
yield better effectiveness. Contrasting with the ensembles, System4
represents a single model that exhibits the best performance on the
mAP@10 metric. This single model is fine-tuned from the pre-
trained CLAIP model, showcasing exceptional performance with a
peak achievement of 0.293 mAP@10 among single model.

4.2. Audio Captioning

The audio captioning performance is shown in and Table 2. As
evident from the results, the incorporation of multi-task training
into CLAP yields perform much better than baseline. And through
ensembling different methods, the system achieves even better re-
sults across almost all evaluation metrics. The overall SPIDEr score
reaches 0.305, while the SPIDEr-FL score reaches 0.294.
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Submissions H R@l R@5 R@10 mAP@10

Baseline || 0.130  0.343  0.480 0.222
Systeml 0213 0465 0.603 0.321
System?2 0.196 0453  0.585 0.305
System3 0206 0461  0.600 0.316
System4 0.185 0433  0.567 0.293

Table 1: Results for text-to-audio retrieval on Clotho evaluation set
by submitted systems.

Submissions || MTR CDEr  SPC  SPDr SPDr-FL

Baseline  [| 0.177 042 0.119 0270 0.261
SystemI 0.19T 0471 0.136 0304 0.295
System?2 0.189 0460 0.136 0.298 0.286
System3 0.190 0468 0.135 0.302 0.292
Systemd 0.192 0474 0136 0305 0.294

Table 2: Results for audio captioning by submitted systems. MTR,
CDEr, SPC, SPDr, SPDr-FL denote METEOR, CIDEr, SPICE, SPI-
DEr and SPIDEr-FL, respectively

5. CONCLUSION

This paper proposes our submission to the DCASE 2023 challenge
Task 6. Our approach utilizes a tri-encoder architecture, incorporat-
ing pre-trained encoders for audio, text, and image to establish rela-
tionships. Through multi-task training and fine-tuning, we achieve
promising results, with a SPIDEr score of 0.305 and a SPIDEr-FL
score of 0.294 for captioning, along with an mAP of 32.14 for text-
to-audio retrieval.
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