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ABSTRACT

In this paper a novel approach for acoustic event detection in sen-
sor networks is presented. Improved and more robust recognition
is achieved by making use of the signals from multiple sensors. To
this end, various known fusion strategies are evaluated along with
a novel method using classifier stacking. A comparative evaluation
of these fusion strategies is performed on two different datasets:
the ITC-Irst database, and a set of smart room recordings. In both
datasets, 32 distributed microphones were used for recording. Fur-
thermore, the effect of previously observed as well as unobserved
locations is investigated. The proposed stacking yields a notable
improvement. The performance of recognizing events at previously
unobserved locations can be improved by sorting the channels ac-
cording to their posterior probabilities.

Index Terms— Bag-of-Features, Acoustic Event Detection,
Sensor Arrays, Robustness, Acoustic Sensor Networks

1. INTRODUCTION

The detection and classification of acoustic events is important for
many practical applications in various environments: The recog-
nition of such events can be used for meeting and online lecture
analysis and annotation [1]. Surveillance in cluttered scenes can
be improved by an acoustic analysis in order to detect unexpected
scenarios that are not easily visually recognizable (e. g. screams or
glass breaking) [2]. In a slightly different field of research outdoor
applications are addressed. These include mobile robots for secu-
rity [3], urban planning [4], and the analysis of possible noise com-
plaints [5]. It can also be used to improve the robustness of different
real world applications, such as speech enhancement, speaker track-
ing, or the calibration of microphone arrays [6–8]. What makes this
problem difficult is the vast diversity of the acoustic events.

Methods for online analysis of acoustic events are typically ap-
plied over short time windows and combined with a sliding window
approach. One common approach stems from speaker identifica-
tion [9]. A Gaussian mixture model (GMM) is trained for each
class. The estimates of all GMMs are summed up over all frames
and the class with the highest likelihood is chosen. These meth-
ods are sometimes termed ’Bag-of-Frames’ [10,11]. Over the last
years, methods that build on the Bag-of-Features (BoF) principle
have emerged in the field of acoustic event detection [12,13]. There,
features are clustered in order to obtain a histogram representation
which is then classified. The BoF principle has been proven to gen-
eralize well with respect to the diversity of the acoustic events.

Many methods in acoustic event detection focus on a single sig-
nal. However, in many scenarios a sensor network with multiple
microphones is available (cf. [8,14]). In [15] multiple channels are
used to extract features describing spatial information. These fea-
tures work well for classifying scenes where the sound sources oc-
cur at distinct locations. In [16] a multi-channel approach that uses
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Figure 1: Overview of the proposed method. A three-step BoF ap-
proach for acoustic event detection is applied to every source in a
sensor network comprised of many microphones, before the results
are combined by a fourth fusion step.

Regression Forests is proposed. The confidence scores of different
channels are accumulated and then the presence is predicted using
a pre-defined threshold. In [17] different combination strategies in-
cluding accumulation of log probabilities, the maximum rule, and
majority voting are evaluated. Both works show that the combina-
tion of information obtained from multiple channels improves the
robustness of the system and the detection results.

This paper extends the BoF approach discussed in [13,18] and
provides a thorough evaluation of different multi-channel fusion
strategies in the context of acoustic event detection. The heuris-
tic combination strategies presented in [17] are compared with a
novel method based on classifier stacking. A comparative evalua-
tion on two different datasets is given. Furthermore, different train-
ing and test setups are evaluated having a closer look at the pre-
requisites necessary for successfully exploiting information from
multiple sources.

2. METHOD

For the acoustic event detection in sensor networks, a single channel
Bag-of-Features (BoF) approach is extended to multiple channels
by adding an additional fusion step that combines the information
from different microphones. A sliding window approach is used for
detection. For each window, four basic processing steps are applied,
as shown in Fig. 1:

1. Given an input signal and a short time window, a set of fea-
ture vectors is calculated for all frames in this window.

2. The feature vectors of all frames in the training set are clus-
tered in a supervised manner using a GMM for each class.
The features within one window are assigned to the clus-
ters using soft assignment. These are accumulated in a his-
togram, the BoF representation.
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3. These representations are then used for classification, apply-
ing maximum likelihood classification.

4. The results from multiple channels are fused in order to get a
more robust classification. A novel fusion strategy based on
classifier stacking is proposed.

2.1. Single-channel BoF acoustic event classification

For the single-channel BoF based acoustic event classification, a
single microphone or beamformed signal is processed in short time
windows. The processing steps are explained in more detail in the
following.

Features Given an input signal and a time window n of w mil-
liseconds, a set of feature vectors Yn = (y1 . . . yK) is calculated.
For sound and especially speech processing, the mel frequency cep-
stral coefficients (MFCCs) are one of the most widely used features.
The input signal is filtered by a mel frequency filter bank, from the
logarithm of its magnitude the discrete cosine transform (DCT) is
computed and its second to 13th coefficient is used. From that the
gammatone frequency cepstral coefficients (GFCCs) were derived
in [19]. Here, the filterbank of the MFCCs is replaced by linear
phase gammatone filters. As for the MFCCs, the second to 13th

GFCC coefficients are used. In addition, a single loudness filter is
evaluated. In total the feature vector has a dimensionality of 27. A
whitening transformation is computed on the training data which is
applied to all feature vectors.

Feature Representation A BoF approach is used for building
a codebook of acoustic words from the training set. While the
classical BoF uses hard quantization via the k-Means algorithm,
soft quantization by GMMs has been shown to improve the per-
formance [13,20]. The basic principle also employs a globally es-
timated codebook which can lead to mitigation of significant dif-
ferences. A remedy for this effect is to build codebooks of size I
for all C classes Ωc separately and then concatenating them into
a large super-codebook [13]. Here, the expectation maximization
(EM) algorithm is applied to all feature vectors yk for each class
Ωc in order to estimate I means and standard deviations µi,c, σi,c

for all C classes. All means and deviations are concatenated into a
super-codebook v with V = I · C elements

vj=(I·c+i) = (µi,c, σi,c) (1)

where the index j is computed from the class index c and the Gaus-
sian index i as j = I ·c+i. Using this codebook, a soft quantization
of a feature vector yk can be computed as

q(yk, vj) = N (yk|µj , σj) /
∑
j′

N (yk|µj′ , σj′) . (2)

Then, a histogram b can be computed over allK frames of the input
window by

b(Yn, vj) =
1

K

∑
k

q(yk, vj) . (3)

Classification The probability P (vj |Ωc) of an acoustic word vj
given class Ωc is estimated using a set of training samples Yn ∈ Ωc

for each class c by Lidstone smoothing:

P (vj |Ωc) =
α+

∑
Yn∈Ωc

b(Yn, vj)

αV +
∑V

m=1

∑
Yn∈Ωc

b(Yn, vm)
(4)

A typical choice for the smoothing factor α is in the range of [0, 1].
Here, α is set to 0.5. Since all classes are assumed to be equally
likely and have the same prior, maximum likelihood classification
is used. The posterior is estimated using the relative frequency of
all acoustic words

P (Yn|Ωc) =
∏
vj∈v

P (vj |Ωc)
b(Yn,vj) . (5)

2.2. Multi-channel fusion

In a sensor network containing M microphones the approach can
be evaluated for each microphone m individually. It is assumed,
that all microphones are synchronized at least at a frame level. The
results can then be combined in order to obtain a more robust classi-
fication. In the following three traditional heuristic fusion strategies
(cf. [17]) will be reviewed and a novel approach based on classifier
stacking will be introduced.

Majority voting A straightforward fusion approach is evaluating
each channel separately so that a set of class labels

ĉ(m) = argmax
c

Pm(Yn|Ωc) (6)

is estimated. Then, a majority voting over all decisions ĉ(m) is per-
formed. This assumes that most microphones are able to detect the
correct event. However, it discards the posterior probabilities which
might carry important information about the confidence of the sin-
gle channels.

Maximum rule The maximum rule is a fusion strategy that con-
siders the posterior probabilities of each channel instead of the la-
bels. It chooses the class with the overall highest posterior probabil-
ity. For each class the maximum over all channels is computed and
then the class with the highest probability in the complete sensor
network is chosen:

ĉ = argmax
c

max
m

Pm(Yn|Ωc) . (7)

This approach can be highly influenced by positive outliers. It is
assumed that at least one microphone is positioned well with respect
to the acoustic event.

Product rule Alternatively the product of the posterior probabili-
ties is used. For each of the classes the product of the posteriors of
all channels is computed. Then, the class with the highest probabil-
ity product in the complete sensor network is chosen:

ĉ = argmax
c

∏
m

Pm(Yn|Ωc) . (8)

In contrast to taking the highest probability this strategy is strongly
influenced by negative outliers.

Classifier stacking While the previous approaches are mere heu-
ristic approaches that decide on a fusion strategy, it is also possible
to learn a combination strategy from the training data. A second
classifier is trained that uses the posterior probabilities from all mi-
crophones in the sensor network as input features. The learned clas-
sification function F is then used for predicting the class:

ĉ = F
(
(Pm(Yn|Ωc))(c,m)

)
. (9)
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Figure 2: Frame-wise F-score [%] comparing fusion strategies with
the single-channel (SC) baseline on the ITC-Irst dataset. For the
single-channel results the mean and standard deviation are plotted.

Two thirds of the training data are used for training the single-
channel BoF models and the single-channel classifiers and the last
third is used in order to train a Random Forest classifier on the pos-
terior probabilities of the single-channel evaluations.

Note that the classifier learns the probabilities based on their
ordering. Therefore, it implicitly learns the position of the micro-
phones and also the locations at which the different acoustic events
occur. This can be an advantage for events or especially noise
sources with a fixed location (e. g. doors or windows). However,
it can be a limitation for events that can occur at arbitrary locations
such as speech. A remedy for this effect is ordering theM channels
according to the highest posterior probability. Sorting the channels
descending by probability provides a new ordering:

M =

[
argsort

m
max

c
Pm(Yn|Ωc)

]
(10)

After re-ordering of the channels, the posterior probabilities are
again used as input for the classifier F . Thus, the indices (c,m)
in eq. 9 are replaced by (c,Mm).

2.3. Detection

Due to its simplicity and rapid computation, the BoF approach can
easily be adapted to event detection, where a sequence of acoustic
events is given. It currently runs in approx. 20% real time on a
single core i7 cpu. The classification window is moved forward in a
sliding window approach by one frame k at a time. The recognition
result is used for the frame that is centered in the window so that
context information is available for a short time before and after the
frame. As the window has a length of wmilliseconds, there is a
processing delay of only w/2 milliseconds.

3. EVALUATION

The experiments are conducted on two different datasets for acous-
tic event detection, the ITC-Irst dataset [14] as well as a set of
recordings conducted in a smart conference room at TU Dortmund
University. On these datasets the detection performance of the pre-
sented multi-channel approaches are evaluated and compared to a
single-channel baseline. All channels were synchronized with a
global clock in both datasets.

3.1. ITC-Irst Dataset

The ITC-Irst dataset is comprised of 16 different acoustic events, in-
cluding door knock, door slam, steps, chair moving, spoon (cup jin-
gle), paper wrapping, key jingle, keyboard typing, phone ring, ap-
plause, cough, laugh, door open, phone vibration, mimo pen buzz,

evaluation method channels error F-score

event-
based

RF [16] mean (4) 15.4% 91.8%
RF [16] fusion (4) 13.0% 93.3%
HMM2 [14] SC (1) 23.6% -
HMM1 [14] SC (1) 45.2% -
SVM [14] SC (1) 64.4% -

frame-
based

RF [16] fusion (4) 30.7% 82.8%
proposed mean (32) 39.0% 77.4%
proposed stacking (32) 25.6% 84.2%

Table 1: Results on the ITC-Irst dataset using the CLEAR evalua-
tion protocol with the first 12 classes as foreground in comparison
to literature results. The methods use either a single channel or dif-
ferent fusion approaches (number of channels in parentheses).

falling object, and unknown/background. The recording room was
equipped with 32 microphones, 28 of which were located in seven
T-shaped arrays on the walls and four were table microphones. The
experiments consist of twelve recording session on three different
days. The first three sessions of each day are considered as training
and the fourth session is used for testing.

The first experiments were conducted using all sounds except
silence and unknown as classes of interest. Then, in order to allow
for comparability with existing experiments [14,16], only the first
twelve classes were considered as foreground and the remaining
ones as background.

Baseline For the evaluation, two different setups were considered.
First, the BoF model is trained on the events of all microphones
yielding a global model. Second, a separate model is trained for
each microphone in the sensor network. In both cases, the BoF
model is computed using a codebook size of I = 30 centroids for
each class and a window size of w = 600 ms based on the results
in [18]. For the baseline each channel is evaluated separately and the
average over all microphones is reported (single channel is denoted
as SC).

Fusion experiments In the following the multi-channel fusion
strategies are compared with each other and to the baseline of
single-channel results. The first two sessions of each day are used
for training the base classifier, the third session for training the
stacking classifier. Since the positions of the acoustic events were
changed for each of the three recording days, the stacking classifier
is able to learn different acoustic locations. The fourth session is
used for testing so that it contains the different locations from all
three days. Note that the single-channel and heuristic approaches
are trained on the complete training set. The frame-wise F-scores
are shown in Fig. 2. The models that are trained for every channel
separately perform much better than a single global model. Fur-
thermore, it can be seen that the classifier stacking that learns a
fusion strategy from the training data outperforms the heuristic ap-
proaches.

Literature comparison For comparison with the literature, only
the first twelve classes are used as foreground (cf. [14,16]). Re-
gression Forest (RF) were evaluated in combination with a multi-
channel fusion approach using this setup [16]. Note that only four
channels were used for evaluating the RF while the proposed ap-
proach is able to incorporate all 32 microphones. In contrast to
[16], a frame-based evaluation protocol is used in this paper. The
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set model SC max prod. vote stacking sorted (32) sorted (5)

separate global 10.7 ± 4.2% 8.5 ± 3.5% 9.3 ± 3.3% 9.5 ± 3.2% 7.6 ± 3.0% 7.2 ± 2.3% 7.1 ± 2.4%
channel-wise 12.2 ± 4.0% 9.2 ± 3.8% 9.4 ± 3.3% 9.8 ± 3.1% 10.0 ± 2.9% 9.5 ± 2.7% 8.4 ± 2.7%

mixed global 7.6 ± 3.2% 5.1 ± 1.3% 6.2 ± 1.7% 6.5 ± 1.7% 3.2 ± 0.9% 3.4 ± 1.0% 3.8 ± 1.1%
channel-wise 6.3 ± 2.6% 4.6 ± 1.6% 5.3 ± 1.8% 5.5 ± 1.7% 2.7 ± 1.0% 2.7 ± 0.9% 2.8 ± 0.8%

Table 2: Mean frame-wise classification error and its standard deviation over five splits of the position experiments. In ”separate”, the events
of the training and test set occur on different sides of the smart room, in ”mixed” on both.
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Figure 3: Mean F-score [%] and the standard deviation over the five
splits of smart room recordings using different fusion strategies on
the dataset.

Acoustic Frame Error Rate (AFER) is calculated analogously to the
Acoustic Event Error Rate (AEER) [14], but with respect to the
frames1. The frame-wise results of [16] are calculated on the result-
ing sequences, that were kindly provided by the authors. The results
are shown in Tab. 1, reporting F-Scores, AEER (event-based error)
and AFER (frame-based error). Additionally the event-based re-
sults of the RF and the CLEAR evaluation [14] are shown in Tab. 1.
The CLEAR evaluation compared two different HMM and an SVM
approach for acoustic event detection on this setup using a single
microphone. The event-based results show that RFs achieve state of
the art results.

On a frame level the proposed approach yields similar perfor-
mance to the RF. The proposed classifier stacking shows the best
results with 25.6% AFER and 84.2% F-score. The performance
which is obtained using the stacking improves the results by a mar-
gin compared to the single-channel performance.

3.2. Smart room recordings

An additional set of acoustic events has been recorded in a smart
room at TU Dortmund University.2 The room is equipped with 32
microphones of which 16 are located at the table and the remain-
ing 16 are mounted at the ceiling. The acoustic events were located
at multiple positions in the room without any overlap. There is a
lot of structure-borne noise changing the characteristics of sounds
based on the microphones location. 19 sound categories have been
recorded: applause, chairs, cups, door, doorbell, doorknock, key-
board, knock, music, paper, phonering, phonevibration, pouring,
screen, speech, steps, streetnoise, touching, ventilator, and silence.
Following the approach proposed in [5], acoustic events that are
longer than five seconds were split into blocks of up to four sec-
onds.

1A similar evaluation has been proposed for the DCASE2016 challenge
referred to as a segment based metric.

2The dataset is publicly available as Multi-channel acoustic event dataset
at http://patrec.cs.tu-dortmund.de/cms/en/home/Resources/

General experiments For generating different training and test
sets five random splits were performed. Each split randomly selects
two thirds of the data from each class for training and the remaining
third for testing. For the stacking experiments the training data is
randomly divided in two thirds for training the single-channel mod-
els and classifiers and the other third for training the stacking classi-
fier. The sliding window is evaluated within the annotated four sec-
ond blocks. All classes are considered as foreground events, using
silence as background. The results are shown in Fig. 3. As for the
ITC-Irst experiments, the stacking approach outperforms the heuris-
tic fusion strategies. The best results are obtained using channel-
specific models and classifier stacking which yields a frame-wise
F-Score of 96.6 ± 0.7%. This is an improvement of 3.7% com-
pared to the mean results of the single-channel evaluation.

Position experiments The dataset contains a set of nine classes
occurring on multiple positions (applause, door, doorknock, key-
board, music, phonering, phonevibration, speech, and ventilator).
Here, the data has been recorded on different sides of the room (left
& right respectively). Again five splits have been computed. Each
split randomly selects the data of an acoustic event from the left
or right side for training and the other side for testing, and vice
versa. Hence, the robustness of the stacking classifier toward lo-
cation changes can be investigated. The classification results are
reported as the frame-wise classification error in Tab. 2. The clas-
sification error is used, because in this experiment all classes are
considered as foreground. For comparison, five mixed sets using
data from both sides for testing and training are also shown. As
expected, the proposed stacking approach works well if a diverse
set of training samples is provided. However, there is a drop in the
performance when the locations in the test differ from the training
set. This limitation can be overcome by sorting the input for the
stacking classifier. In Tab. 2 the results for all 32 and the first 5
microphones of the sorted setM (denoted as sorted (32) and sorted
(5) respectively) are shown (see eq. 10). Interestingly, the global
model seems more robust toward reducing the information covered
by the training set. This is probably due to the fact that multiple
event locations and all microphones at different postions are used
for training the model.

4. CONCLUSION

In this paper a multi-channel approach for acoustic event detec-
tion in sensor networks that builds on the Bag-of-Features principle
has been presented. It was shown that combining the information
from different channels allows for improving the performance of
the recognition system. A novel fusion strategy that uses classifier
stacking has been introduced which yields state-of-the-art results.
Sorting the ordering of the microphones according to the posterior
probability can overcome the requirement of having all locations in
the training set.
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