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ABSTRACT 

This paper presents a system for acoustic scene classification 
(ASC) that is applied to data of the ASC task of the DCASE’16 
challenge (Task 1). The proposed method is based on extracting 
acoustic features that employ a relatively long temporal context, 
i.e., amplitude modulation filer bank (AMFB) features, prior to 
detection of acoustic scenes using a neural network (NN) based 
classification approach. Recurrent neural networks (RNN) are 
well suited to model long-term acoustic dependencies that are 
known to encode important information for ASC tasks. However, 
RNNs require a relatively large amount of training data in com-
parison to feed-forward deep neural networks (DNNs). Hence, 
the time-delay neural network (TDNN) approach is used in the 
present work that enables analysis of long contextual infor-
mation similar to RNNs but with training efforts comparable to 
conventional DNNs. The proposed ASC system attains a recog-
nition accuracy of 76.5 % on the development set, which is 4.0 % 
higher compared to the DCASE’16 baseline system. 

 
Index Terms— Time-delay neural networks, acoustic scene 

classification, DCASE, amplitude modulation filter bank fea-
tures.1 

1. INTRODUCTION 

Machine listening for automatic scene classification (ASC) be-
comes increasingly popular, e.g., as reflected by a past ASC chal-
lenge that compared research results of many international re-
search teams [1]. Devices like hearing-aids, smart-phones, and 
robotic platforms are equipped with microphones and applica-
tions analyzing the acoustical environment, e.g., to allow for 
switching parameters of signal processing schemes [2,3]. Hence, 
in many situations it is of interest to know the environment in 
which an electronic device is used, e.g., to distinguish acoustic 
conditions of a conference room, cafeteria or subway. ASC algo-
rithms aim at classifying the surrounding environment automati-
cally by identifying acoustic events and sound characteristics that 
are specific for the environment. In contrast to acoustic event 
detection (AED) [4,5,6], individual events are of minor interest 

                                                                 
1 This work was funded in parts by the European Commis-

sion (project EcoShopping, project no.609180) and the Federal 
Ministry for Education and Research (BMBF), project ACME 
4.0, FKZ 16ES0469). 

and since acoustic scenes do not change rapidly, constraints on 
temporal resolution for ASC are more relaxed than for AED and 
often comprise lengths of 30 seconds [1,7,8] up to 3 minutes [9]. 

Different approaches have been proposed for the purpose of 
automatic ASC such as the use of a bag-of frames approach [9], 
for which a Gaussian mixture model (GMM) in combination with 
Mel-frequency cepstral coefficients (MFCCs) are adopted. This 
approach has established itself in the field of scene classification 
and till today is still accepted as a reasonable baseline system for 
the DCASE challenges 2013 [1] and 2016 [7], though most of the 
systems in the DCASE’13 challenge could outperform the base-
line results. Proposed features within DCASE’13 ranged from 
standard features such as MFCCs [10,11] and low-level features 
like energy, spectral flux etc. [12,13] over cochleograms [14] to 
histogram of gradients (HOG) features [8] and Gabor filter bank 
(GFB) features [15] that both have been derived from computer 
vision. Most back-end classifiers used for the DCASE’13 chal-
lenge were based on support vector machines (SVM) 
[16,12,14,8,11].  

In a recent publication [17], the idea of using HOG features 
was revisited and improved by using them in conjunction with 
the subband power distribution (SPD). Other common approach-
es for ASC apply non-negative matrix factorization (NMF) to 
spectrograms to decompose features before classification [18,19].  

In this contribution, we propose the use of amplitude modu-
lation filter bank (AMFB) features [20] in combination with a 
neural network (NN) based classifier for the task of ASC. AMFB 
features analyze temporal amplitude fluctuations of static MFCCs 
within modulation frequency subbands. In combination with 
GMM and deep neural network (DNN) based systems, AMFB 
features have demonstrated to outperform numerous other com-
mon feature extraction methods in automatic speech recognition 
(ASR) [21,20,22]. In addition to AMFB features, spectral flux, 
spectral centroid, and spectral entropy features are calculated and 
appended. 

DNNs are well established in, e.g., ASR [23,24] and have 
recently received increased attention also in the field of AED 
[25,26]. In ASR and AED, DNNs have proven to outperform 
conventional GMM-HMM approaches [27,25] and NMF-based 
features [26] under the constrained of availability of sufficient 
training data. Hence, DNNs may also be well suited for acoustic 
ASC, since ASC corpora mostly comprise several hours of data, 
e.g., the LITIS Rouen dataset [8] that comprises 25 hours of ur-
ban sound scenes, which is necessary to train a reasonable NN-
based system. 

Here, we report on our work on the DCASE’16 challenge 
and results are shown using a time-delay neural network (TDNN) 
architecture [28] that relies on AMFB features as an input for the 



Detection and Classification of Acoustic Scenes and Events 2016  3 September 2016, Budapest, Hungary 

 

Task 1 of the DCASE’16 challenge, which comprises less than 
10 hours of recordings [7]. Results are compared to the 
DCASE’16 baseline system that applies GMM acoustic models 
in combination with MFCC features. 

2. METHODS 

2.1. Extraction of Amplitude Modulation Filter Bank Fea-
tures 

The acoustic feature extraction scheme employs the amplitude 
modulation filter bank (AMFB) to decompose short-term spectral 
features into AM frequency components [20]. Signal processing 
steps are depicted in Fig. 1. The short-term spectral representa-
tion Yk (l) for block l is calculated by applying a discrete Fourier 
transform (DFT) on audio segments of 25 ms length with a hop 
size of 10 ms. Segments are windowed by the Hann function 
wb (n) to minimize the spectral leakage effect. 
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In (1) and (2), n, k, b, and N represent the discrete time and 
frequency indices, the analysis window length, and the DFT 
length, respectively. 

The magnitude of the complex valued spectrum Yk (l) is 
passed to the triangular-shaped Mel filters Fk,m that integrate DFT 
bins into M = 40 critical spectral bands. Mel-spectral energies are 
compressed using a logarithmic function, whereby the log-Mel-
spectrogram Ŷm (l) is derived for each Mel band m. 
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Log-Mel-spectral energies are analyzed by a discrete cosine 
transform (DCT), which leads to the cepstrogram Ỹc (l) with C 
being the DCT length. 
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Temporal dynamics of the cepstrogram are analyzed using 
the AMFB. The AMFB consists of I complex exponential func-
tions qi (l0), that are windowed by the zero-phase Hann envelope 
Wi (l0). 
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Bi determines the AM filter length with the sampling period T. 
Ωi and βi are the angular AM frequency and the -3 dB AM filter 
bandwidth, respectively. Convolution of qi (l0) and Ỹc (l0) yields 
the AM frequency decomposition of the cepstrum. 

( ) ( )( ),ic c iQ l Y q l= ∗  (8) 

Center frequency (CF) and bandwidth (BW) settings of the 
employed AM filters are presented in Table 1, which are derived 
by an ASR study on finding optimal AMFB parameters using 
different ASR corpora [22]. The last step of AMFB feature ex-
traction is the concatenation of real and imaginary AM filter 
outputs to form a feature vector. Note that the imaginary part of 
the DC filter is zero, and thus is not taken into account. 

2.2. Other Features 

Spectral flux, spectral centroid, and spectral entropy features are 
derived according to Eq. 9-11 and appended to AMFB features. 
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These three feature types are used to measure the spectral 
“center of mass”, the spectral “rate of change”, and the spectral 
“complexity” [12,13]. 

2.3. Classification 

Extracted features are fed into a time-delay neural network 
(TDNN) to extract further acoustic cues and to perform the clas-
sification task. The TDNN differs from a conventional DNN by 
the multi-splicing concept that enables an efficient way of mod-
elling a large temporal context [28,29]. Multi-splicing denotes a 
method by which feature frames and intermediate DNN-layer 

Fig. 1. Signal processing scheme to extract amplitude modula-
tion filter bank features. 

Table 1. Center frequency (CF) and bandwidth (BW) parameters 
of the amplitude modulation filter bank. 

i 0 1 2 3 4 
CF [Hz] 0 5.5 10.15 15.91 27.03 
BW [Hz] 8.25 5.5 6.13 8.27 19.52 

 



Detection and Classification of Acoustic Scenes and Events 2016  3 September 2016, Budapest, Hungary 

 

outputs are time-delayed and stacked to form the input to an 
upstream neural network (NN) layer. Splicing configurations per 
NN-layer are presented in Table 2. For example, the splicing 
notation [-6, 0, 4] in the first NN-layer denotes that the current 
frame minus six, the current frame itself, and the current frame 
plus 4 are spliced together by stacking input feature frames. We 
do not splice consecutive frames in the first layer, since AMFB 
features are used as input that already capture a temporal context 
of +/- 13 time frames and, thus, consecutive AMFB feature 
frames have highly overlapping filter functions and a high re-
dundancy, respectively. The same principle applies to outputs of 
deeper NN-layers that capture an increasing temporal context 
due to the previous splicing stages. In total the TDNN captures 
feature frames ranging from -92 to +90, which corresponds with 
the feature frame rate of 100 Hz to a total temporal context of 
approx. 1.8 seconds. 

The TDNN training is based on the greedy layer-wise su-
pervised training [30] and the layer-wise backpropagation algo-
rithm [27], respectively. As nonlinear activation units we are 
using the p-norm function that effect a dimension reduction of 
NN-layer outputs that each consist of 576 neurons in our setup. 
For example, for a group of G neurons xi the p-norm output y is 
being computed by Eq. 12 with p = 2 and G = 6. 
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Thus, the output of each NN-layer is reduced from 576 to 
96. The final TDNN output layer has 15 neurons representing 
the 15 acoustic scenes that need to be discriminated. 

3. EXPERIEMNTAL SETUP 

For evaluating the algorithms, the database provided within the 
DCASE’16 challenge is used [7]. It consists of 15 scene classes: 
lakeside beach, bus, cafe/restaurant, car, city center, forest path, 
grocery store, home, library, metro station, office, urban park, 
residential area, train, and tram. Each scene is composed of 39 
minutes of stereo recordings at 44.1 kHz sampling frequency 
that are trimmed to 30 second files. The data is divided into four 
disjoint sets to conduct a four-fold cross-validation, where all 
files belonging to one specific time/location are part of one set.  

Evaluation is conducted file-wise applying the accuracy 
measure, i.e., the number of correctly classified files in ratio to 
the total number of files. 

4. RESULTS 

In order to artificially augment the number of training frames the 
left and right channel of the stereo audio data is used in addition 
to the mean of both channels. In the testing phase the TDNN 
output for each of these three audio tracks is computed and the 
detected acoustic scene within an audio test file is based on a 
majority vote across frames and audio tracks. Note that prior to 
feature extraction we resampled data of the DCASE’16 challenge 
to 16 kHz. 

Results of the proposed method and the DCASE’16 baseline 
system are presented in Table 3. On the cross-validation devel-
opment set, the average improvement of the TDNN system 
amounts 4 % compared to the baseline. Particular strength can be 
noted for the environments beach, car, forest path, grocery store, 
library, park, residential area, and train. A decreased perfor-
mance is found for the environments bus, café/restaurant, home, 
metro station, and office. Fig. 2 depicts the confusion matrix of 
the proposed classification system. It shows that some environ-
ments with relatively low recognition rates, i.e., café/restaurant, 
bus, library, park, and train, are mostly confused with similar or 
related environments such as café/restaurant > grocery store, 
bus > tram/train, library > home, park > residential area, and 
train > tram/bus. 

Scene classification results of the evaluation test data are 
shown in Table 3. The average recognition score of the proposed 
TDNN system constitutes 79.0 %, which is 1.8 % higher com-
pared to the baseline results. Whereas in most acoustic scenes the 
TDNN system scored significantly better or with comparable 

Table 3. Acoustic scene classification results of the DCASE’16 
baseline system and the proposed TDNN-based system. 

 Hit Rates [%] 

 
Development 

(Cross-Validation) 
Evaluation 

Environment Baseline 
Proposed 
Method 

Baseline 
Proposed 
Method 

Beach 69.3 79.5 84.6 88.5 

Bus 79.6 56.4 88.5 100.0 

Café/Restaurant 83.2 44.9 69.2 19.2 

Car 87.2 96.2 96.2 100.0 

City Center 85.5 88.5 80.8 92.3 

Forest Path 81.0 98.7 65.4 100.0 

Grocery Store 65.0 87.2 88.5 88.5 

Home 82.1 76.9 92.3 92.3 

Library 50.4 69.2 26.9 38.5 

Metro Station 94.7 79.5 100.0 80.8 

Office 98.6 76.9 96.2 100.0 

Park 13.9 56.4 53.8 61.5 

Residential Area 77.7 88.5 88.5 76.9 

Train 33.6 64.1 30.8 46.2 

Tram 85.4 84.6 96.2 100.0 

Average 72.5 76.5 77.2 79.0 
 

Table 2. Multi-splicing configuration of the TDNN system. 
Numbers in brackets indicate frame indices that are spliced 
together at each neural net layer. 

NN-Layer Input Context [Frames] 

1 [-6 ,0 ,4] 

2 [-12 ,0 ,12] 

3 [-24 ,0 ,24] 

4 [-50 ,0 ,50] 

5 [0] 
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accuracy as the baseline system, classification results of the ca-
fé/restaurant environment are clearly deteriorated. A closer in-
vestigation of why this acoustic scene has not been detected well 
enough is still pending. Possibly it has been confused with the 
grocery store (cf. Fig. 2), which exhibits similar acoustic condi-
tions and events. 

5. DISCUSSION AND CONCLUSIONS 

A time-delay neural network (TDNN) based acoustic scene clas-
sification approach is proposed that employs the amplitude mod-
ulation filter bank (AMFB) as well as spectral flux, centroid, and 
entropy features. The system aims at analyzing a relatively long 
temporal context to identify the acoustic environments. It is 
shown that the AMFB-TDNN system improves over a MFCC-
GMM baseline system by approximately 4.0 % and 1.8 % on the 
development and evaluation test data, respectively. Further im-
provements may be attained by additionally utilizing binaural 
cues of the stereo DCASE’16 data that is recorded using a mani-
kin head with in-ear microphones and by emphasizing other 
features such as iVectors, for example. 

6. REFERENCES 

[1] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and D. 
Plumbley, "Detection and classification of audio scenes and 
events," IEEE Transaction on Multimedia, vol. 17, no. 10, 
pp. 1733-1746, 2015. 

[2] J. Rennies, S. Goetze, and J. .-E. Appell, "Personalized 
Acoustic Interfaces for Human-Computer Interaction," in 
Human-Centered Design of E-Health Technologies: 
Concepts, Methods and Applications. IGI Global, 2011, ch. 
8, pp. 180-207. 

[3] B. Cauchi, S. Goetze, and S. Doclo, "Reduction of non-
stationary noise for a robotic living assistant using sparse 
non-negative matrix factorization," in Speech and 

Multimodal Interaction in Assistive Environments, Jeju 
Island, 2012. 

[4] D. Giannoulis, et al., "Detection and classification of 
acoustic scenes and events: An IEEE AASP challenge," in 
Workshop on Applications of Signal Processing to Audio 
and Acoustics, New Paltz, 2013. 

[5] J. Schröder, et al., "On the use of spectro-temporal features 
for the IEEE AASP challenge ‘detection and classification 
of acoustic scenes and events’," in IEEE Workshop on 
Applications of Signal Processing to Audio and Acoustics, 
New Paltz, 2013. 

[6] R. Stiefelhagen, et al., "The clear 2006 evaluation," in 
Multimodal technologies for perception of humans. Springer 
Berlin Heidelberg, 2007, pp. 1-44. 

[7] A. Mesaros, T. Heittola, and T. Virtanen, "TUT database for 
acoustic scene classification and sound event detection," in 
24th European Signal Processing Conference, Budapest, 
2016. 

[8] A. Rakotomamonjy and G. Gasso, "Historgram of gradients 
of time-frequency representations for audio scene 
classification," IEEE/ACM Transaction on Audio, Speech, 
and Signal Processing, vol. 23, no. 1, pp. 142-153, 2015. 

[9] J. .-J. Aucouturier, B. Defreville, and F. Pachet, "The bag-
of-grames approach to audio pattern recognition: A 
sufficient model for urban soundscapes but not for 
polyphonic music," Journal of the Acoustical Society of 
America, vol. 122, no. 2, pp. 881-891, 2007. 

[10] W. Nogueira, G. Roma, and P. Herrera, "Sound scene 
identification based on MFCC, binaural features and a 
support vector machine classifier," technical report, 2013. 

[11] G. Roma, W. Nogueira, and P. Herrera, "Recurrence 
quantification analysis features for audiotory scene 
classification," technical report, 2013. 

[12] J. T. Geiger, B. Schuller, and G. Rigoll, "Recognizing 
acoustic scenes with large-scale audio feature extraction and 
SVM," TUM, technical report, 2013. 

[13] D. Li, J. Tam, and D. Toub, "Auditory scene classification 
using machine learning techniques," technical report, 2013. 

[14] J. D. Krijnders and G. A. ten Holt, "A tone-fit feature 
representation for scene classification," technical report, 
2013. 

[15] J. Schröder, S. Goetze, and J. Anemüller, "Spectro-temporal 
Gabor filterbank features for acoustic event detection," 
IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, vol. 23, pp. 2198-2208, 2016. 

[16] M. Chum, A. Habshush, A. Rahman, and C. Sang, "IEEE 
AASP scene classification challenge using hidden Markov 
models and frame based classification," technical report, 
2013. 

[17] V. Bisot, S. Essid, and G. Richard, "HOG and subband 
power distribution image features for acoustic scene 
classificantion," in 23rd European Signal Processing 
Conference, Nice, 2015, pp. 2551-2555. 

[18] B. Cauchi, "Non-negative matrix factorisation applied to 
auditory scenes classfication," M.S. thesis, ATIAM 
ParisTech, Paris, 2011. 

[19] V. Bisot, R. Sterizal, S. Essid, and G. Richard, "Acoustic 

Fig. 2. Aggregate confusion matrix of the four-fold cross-
validation results. Rows are ground truths and columns recog-
nized scenes. 

be
ac

h
bu

s

ca
fe

_r
es

ta
ur

an
t

ca
r

cit
y_

ce
nt

er

fo
re

st_
pa

th

gr
oc

er
y_

sto
re

ho
m

e

lib
ra

ry

m
et

ro
_s

ta
tio

n
of

fic
e

pa
rk

re
sid

en
tia

l_a
re

a
tra

in
tra

m
 

 

               

beach

bus

cafe_restaurant

car

city_center

forest_path

grocery_store

home

library

metro_station

office

park

residential_area

train

tram

H
it 

ra
te

 [%
]

10

20

30

40

50

60

70

80

90



Detection and Classification of Acoustic Scenes and Events 2016  3 September 2016, Budapest, Hungary 

 

scene classification with matrix factorization for 
unsupervised feature learning," in International Conference 
on Acoustics, Speech, and Signal Processing, Shanghai, 
2016, pp. 6445-6449. 

[20] N. Moritz, J. Anemüller, and B. Kollmeier, "An auditory 
inspired amplitude modulation filter bank for robust feature 
extraction in automatic speech recognition," IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, 
vol. 23, no. 11, pp. 1926-1937, 2015. 

[21] N. Moritz, et al., "A CHiME-3 challenge system: Long-term 
acoustic features for noise robust automatic speech 
recognition," in IEEE Automatic Speech Recognition and 
Understanding Workshop, Phoenix, 2015. 

[22] N. Moritz, B. Kollmeier, and J. Anemüller, "Integration of 
optimized modulation filter sets into deep neural networks 
for automatic speech recognition," IEEE/ACM Transactions 
on Audio, Speech, and Language Processing, 2016. 

[23] G. Hinton, et al., "Deep neural networks for acoustic 
modeling in speech recognition: The shared views of four 
research groups," IEEE Signal Processing Magazine, vol. 
29, no. 6, pp. 82-97, 2012. 

[24] M. Seltzer, Y. Dong, and Y. Wang, "An investiagtion of 
deep neural networks for noise robust speech recognition," 
in IEEE International Conference on Acoustics, Speech, and 
Signal Processing, Vancouver, 2013, pp. 7398-7402. 

[25] O. Gencoglu, T. Virtanen, and H. Huttunen, "Recognition of 
acoustic events using deep neural networks," in 22nd 
European Signal Processing Conference, Lisbon, 2014, pp. 
506-510. 

[26] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, "Multi-
label vs. combined single-label sound event detection with 
deep neural networks," in 23rd European Signal Processing 
Conference, Nice, 2015, pp. 2551-2555. 

[27] F. Seide, G. Li, and D. Yu, "Conversational speech 
transcription using context-dependent deep neural 
networks," in Interspeech, Florence, 2011, pp. 437-440. 

[28] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. 
Lang, "Phoneme recognition using time-delay neural 
networks," IEEE Transaction on Acoustics, Speech, and 
Language Processing, vol. 37, no. 3, pp. 328-339, 1989. 

[29] V. Peddinti, D. Povey, and S. Khudanpur, "A time delay 
neural network architecture for efficient modeling of a long 
temporal contexts," in Interspeech, Dresden, 2015, pp. 
2440-2444. 

[30] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, 
"Greedy layer-wise training of deep networks," in Advances 
in neural information processing systems, vol. 19, 
Vancouver, 2007, pp. 153-160. 

 
 


