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e Subset of Google’s AudioSet | ;
e 51,172 for training, 488 for testing {Ill |} AUdeEt

e 10s clips (padded with zeros, if not 10s)

e \Weak labeled
e 17 classes - Car, Bus, Train, Truck etc..
e Single recording can have more than one sound source
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Weight | Weight | Precision | Recall @ F-score Error rate | F-score
0.002 1 449 37.0 40.5 1.38 10.9
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Sound tagging Sound Event detection
Strong | Weak F-score Error rate
Weight | Weight | Precision | Recall @ F-score ching Error rate | F-score ching
0.002 1 44.9 37.0 40.5 1.38 10.9
0.02 1 442 36.5 40.0 1.13 17.0
0.2 1 47.5 39.6 43.2 46.6 0.84 38.1 0.80
1 1 47.5 39.7 43.3 45.5 0.84 38.8 0.81
1 0.2 47.3 39.5 43.0 44.5 0.84 38.6 0.82
1 0.02 25.5 20.6 22.8 0.81 411
1 0.002 20.5 16.5 18.3 26.3 0.81 42.4 0.79

55.6 0.66
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e Dataset
o Weak labels
o  More than one label for each recording
e Proposed neural network
o  Convolutional recurrent neural network (CRNN)
o Two sequential outputs - strong label followed by weak
e Results
o CRNN was shown to learn temporal information, given just weak labels
o Best result was against our intuition: equal scaling of strong and weak loss
e Future work
o  More fine tuning

o Strong labels for high energy regions only
o Attention layers
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Log mel-band energy (500x40)
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