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How about combining both approaches for ASC ?



Proposed System
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● Freesound Extractor by 

● http://essentia.upf.edu/documentation/freesound_extractor.html  

Gradient Boosting Machine

8

splitting

audio 
snippets

score
aggregation

Freesound
Extractor

feature 
vectors

acoustic
scene

nGBMnn

http://essentia.upf.edu/documentation/freesound_extractor.html


● Gradient Boosting Machine:
⇀ effective in Kaggle
⇀ multiple weak learners (decision trees)
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● Gradient Boosting Machine:
⇀ effective in Kaggle
⇀ multiple weak learners (decision trees)
⇀ added iteratively

● Implementation:
⇀ LigthGBM https://github.com/Microsoft/LightGBM 

Gradient Boosting Machine
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● Score aggregation:
⇀ averaging scores across snippets
⇀ argmax

● Results:
⇀ development set
⇀ 4-fold cross-validation provided
⇀ Accuracy: 80.8%

Gradient Boosting Machine
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● log-scaled mel-spectrogram
⇀ 128 bands

Convolutional Neural Network
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● log-scaled mel-spectrogram
⇀ 128 bands

●  Time splitting:
⇀ T-F patches 1.5s

Convolutional Neural Network
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Convolutional Neural Network
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Convolutional Neural Network
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● Design of convolutional filters:
⇀ spectro-temporal patterns for ASC?
⇀ different rectangular filters (Pons, 2017) (Phan, 2016)
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Q = 1



Convolutional Neural Network
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● Design of convolutional filters:
⇀ spectro-temporal patterns for ASC?
⇀ different rectangular filters (Pons, 2017) (Phan, 2016)
⇀ multiple vertical filter shapes ( Q = 1, 2, 3, 4, 5 )

Q = 4
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How different do they behave? 



Models’ Comparison
● (Confusion matrix by GBM - Confusion matrix by CNN)
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Late Fusion
● GBM:

⇀ prediction probabilities

● CNN:
⇀ softmax activation values
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Late Fusion
● GBM:

⇀ prediction probabilities

● CNN:
⇀ softmax activation values

● Late fusion approach:
⇀ arithmetic mean + argmax

● System accuracy on development set: 
⇀ 83.0 %
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Results
● residential area

        vs park
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● residential area
        vs park
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Challenge Ranking
● accuracy drop

● outperforming baseline by absolute 6.3 %
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Summary
● Ensemble of two models

● Simplicity of models:
⇀ GBM + out-of-box feature extractor
⇀ CNN using domain knowledge
⇀ providing complementary information

● Simple late fusion method

● Reasonable results although room for improvement
⇀ individual models
⇀ fusion approach
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Thank you!
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