Acoustic Scene Classification by Ensembling Gradient Boosting Machine and Convolutional Neural Networks

DCASE 2017

Eduardo Fonseca, Rong Gong, Dmitry Bogdanov, Olga Slizovskaia, Emilia Gomez and Xavier Serra

MTG Music Technology Group

Outline

- Introduction
- Proposed System & Results
- Summary

- Acoustic Scene Classification (ASC)
 - → 15 acoustic scenes

- Traditionally: feature engineering
 - \rightarrow feature extraction
 - \rightarrow classifier

- Traditionally: feature engineering
 - \rightarrow feature extraction
 - → classifier

- Nowadays: data-driven
 - → learning representations

- Traditionally: feature engineering
 - \rightarrow feature extraction
 - → classifier

- Nowadays: data-driven
 - → learning representations

How about combining both approaches for ASC ?

Proposed System

• Freesound Extractor by **ESSENTIA**

Table 1: Selected features extracted by *FreesoundExtractor*.

Feature name	Dim	Feature name	Dim
Bark bands energy	32	Tonal features	3
ERB bands energy	23	Pitch features	3
Mel bands energy	45	Silence rate	3
MFCC	13	Spectral features	32
HPCP	38	GFCC	13

<u>http://essentia.upf.edu/documentation/freesound_extractor.html</u>

- Gradient Boosting Machine:
 - \rightarrow effective in Kaggle
 - → multiple weak learners (decision trees)

+

- Gradient Boosting Machine:
 - → effective in Kaggle
 - → multiple weak learners (decision trees)
 - → added iteratively

- Implementation:
 - LigthGBM <u>https://github.com/Microsoft/LightGBM</u>

- Score aggregation:
 - → averaging scores across snippets
 - → argmax
- Results:
 - → development set
 - → 4-fold cross-validation provided
 - → Accuracy: 80.8%

- log-scaled mel-spectrogram
 - → 128 bands

- log-scaled mel-spectrogram
 - → 128 bands
- Time splitting:
 - → T-F patches 1.5s

• Global time-domain pooling (Valenti, 2016)

- Design of convolutional filters:
 - → **spectro**-temporal patterns for ASC?
 - → different rectangular filters (Pons, 2017) (Phan, 2016)

- Design of convolutional filters:
 - → **spectro**-temporal patterns for ASC?
 - → different rectangular filters (Pons, 2017) (Phan, 2016)
 - \rightarrow multiple **vertical** filter shapes (Q = 1, 2, 3, 4, 5)

- Design of convolutional filters:
 - → **spectro**-temporal patterns for ASC?
 - → different rectangular filters (Pons, 2017) (Phan, 2016)
 - \rightarrow multiple **vertical** filter shapes (Q = 1, 2, 3, 4, 5)

Recap

- Feature engineering:
 - → Freesound Extractor
 - → GBM
- Accuracy 80.8%

Recap

- Feature engineering:
 - → Freesound Extractor
 - → GBM
- Accuracy 80.8%

- Data-driven
 - → log-scaled mel-spectrogram

→ CNN

• Accuracy: 79.9%

Recap

- Feature engineering:
 - → Freesound Extractor
 - → GBM
- Accuracy 80.8%

- Data-driven:
 - → log-scaled mel-spectrogram

→ CNN

• Accuracy: 79.9%

How different do they behave?

• (Confusion matrix by GBM - Confusion matrix by CNN)

25

• (Confusion matrix by GBM - Confusion matrix by CNN)

Late Fusion

- GBM:
 - \rightarrow prediction probabilities
- CNN:
 - ightarrow softmax activation values

Late Fusion

- GBM:
 - → prediction probabilities
- CNN:
 - → softmax activation values
- Late fusion approach:
 - → arithmetic mean + argmax
- System accuracy on development set:
 - **→** 83.0 %

Results

 residential area vs park

Results

- residential area vs park
- tram vs train

Results

- residential area vs park
- tram vs train
- grocery store vs cafe/resto

Challenge Ranking

- accuracy drop
- outperforming baseline by absolute 6.3 %

Summary

- Ensemble of two models
- Simplicity of models:
 - → GBM + out-of-box feature extractor
 - → CNN using domain knowledge
 - → providing complementary information
- Simple late fusion method
- Reasonable results although room for improvement
 - → individual models
 - \rightarrow fusion approach

Thank you!

MTG Music Technology Group

References

- H. Phan, L. Hertel, M. Maass, and A. Mertins, "*Robust audio event recognition with 1-max pooling convolutional neural networks*", arXiv preprint arXiv:1604.06338, 2016.
- J. Pons, O. Slizovskaia, R. Gong, E. Gómez, and X. Serra, "*Timbre Analysis of Music Audio Signals with Convolutional Neural Networks*", in 25th European Signal Processing Conference (EUSIPCO2017).
- M. Valenti, A. Diment, G. Parascandolo, S. Squartini, and T. Virtanen, "*DCASE 2016 acoustic scene classification using convolutional neural networks*," in Proc. Workshop Detection Classif. Acoust. Scenes Events, 2016.