ACOUSTIC SCENE CLASSIFICATION USING SPATIAL FEATURES

Marc Ciufo Green and Damian Murphy Audio Lab Department of Electronic Engineering University of York Ath-order Ambisonic acoustic scene recordings
Spectral and spatial analysis
Machine listening system

Spatial features outperform spectral

OUTLINE

Soundman OKM II Klassik Electret

Use of mono/stereo recordings

- Easier to record (maybe)
- Inheritance of work from other fields
- Applications in smart devices / robotics
- Limited to spectral / binaural spatial features
- Can work well (83.3 % accuracy in latest DCASE)

PREVIOUS WORK

Aircraft takeoff: 110 dB(A)

Rock concert: 110 dB(A)

tp://www.flydayton.com/

http://ajr.org/2014/11/13/music-critics-role-changing/

ALTERNATIVE APPLICATION – ENVIRONMENTAL SOUND

https://www.nps.gov/yose/learn/nature/soundscape.htm

Goal: event detectionScene classification as first step

Lots of examples of each scene needed
TUT database – stereo
DEMAND database – not enough examples
New database required

DATABASE

EIGENSCAPE DATABASE

Mh Acoustics Eigenmike

- 4th-order Ambisonics high spatial resolution
- ▶ 8 examples of 8 different scene classes
- 10 minutes per clip
- > 24-bit / 48 kHz
- Available now!

DOI 10.5281/zenodo.1012809

Beach Busy Street Park Pedestrian Zone Quiet Street Shopping Centre Train Station Woodland

DIRECTIONAL AUDIO CODING (DIRAC)

4-fold cross-validation e.g.

- Probabilities summed across 30 seconds of segments
- Highest probability returned determines label selected
- Classifiers trained and tested across all four folds with results aggregated

Mean classification accuracies using MFCC and DirAC features

Classification accuracies using MFCC and DirAC features

Per-class accuracies using Elevation/Diffuseness features

Confusion Matrices

MFCC features

									_	100
Beach	36	4	1	13	18	14	15	0		100
BusyStreet	0	92	1	0	6	0	1	0		80
Park	0	7	46	6	31	0	4	7		
PedestrianZone	0	1	1	52	19	6	18	3		60
QuietStreet	0	6	12	20	57	0	0	5		40
ShoppingCentre	0	0	0	29	0	69	1	0		
TrainStation	0	29	2	29	11	3	26	0		20
Woodland	0	0	10	2	4	0	0	84		
	В	BS	Р	ΡZ	QS	SC	TS	W		0

Elevation/Diffuseness features

Beach	8	27	0	9	56	0	0	0		100
BusyStreet	0	86	1	9	3	0	1	0		80
Park	0	0	64	0	29	0	1	6		
PedestrianZone	0	1	0	97	1	0	2	0		60
QuietStreet	0	9	8	9	68	0	1	6		40
ShoppingCentre	0	0	0	0	0	71	29	0		
TrainStation	0	0	0	4	5	14	76	0		20
Woodland	0	0	1	0	12	0	1	85		
	В	BS	Р	ΡZ	QS	SC	TS	W		0

- Accurate classification with spatial features
- E/D features outperform MFCC
- Important initial result spatial features valuable
- Spectral similarity and spatial similarity not the same
- Good, not perfect accuracy validates EigenScape

Next steps:

- Use of higher-order channels
- Event detection

CONCLUSIONS

- [1] mh Acoustics, em32 Eigenmike microphone array release notes, mh acoustics, 25 Summit Ave, Summit, NJ 07901, April 2013. [Online]. Available: https://mhacoustics.com/sites/default/files/EigenmikeReleaseNotesV15.pdf
- [2] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, "Detection and classification of acoustic scenes and events," *IEEE Transactions on Multimedia*, vol. 17, no. 10, pp. 1733–1746, October 2015.
- [3] D. Barchiesi, D. Giannoulis, D. Stowell, and M. D. Plumbley, "Acoustic scene classification: Classifying environments from the sounds they produce," *IEEE Signal Processing Magazine*, May 2015.
- [4] J.-J. Aucouturier, B. Defreville, and F. Pachet, "The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music," *Journal of the Acoustical Society of America*, vol. 122, no. 2, 2007.
- [5] M. Lagrange and G. Lafay, "The bag-of-frames approach: A not so sufficient model for urban soundscapes," Journal of the Acoustical Society of America, vol. 128, no. 5, November 2015
- [6] A. Mesaros, T. Heittola, and T. Virtanen, "Tut database for acoustic scene classification and sound event detection," in 24th European Signal Processing Conference (EUSIPCO), August 2016.
- [7] V. Pulkki, "Spatial sound reproduction with directional audio coding," Journal of the Audio Engineering Society, vol. 55, no. 6, pp. 503–516, June 2007.
- [8] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar, E. Battenberg, and O. Nieto, "librosa: Audio and music signal analysis in python," in Proc. of the 14th Python in Science Conference (SciPy 2015), 2015.
- [9] A. L. Brown, "Soundscapes and environmental noise management," Noise Control Engineering Journal, vol. 58, no. 5, pp. 493 500, 2010.
- [10] Marc Ciufo Green, & Damian Murphy. (2017). EigenScape [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1012809

REFERENCES

EigenScape Database: <u>http://doi.org/10.5281/zenodo.1012809</u>

- Code: <u>https://github.com/marc1701/EigenScape</u>
- Map: <u>http://bit.ly/EigenSMap</u>

