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Examples of acoustic scenes

Bus - traveling by bus in the city (vehicle)

Cafe / Restaurant - small cafe/restaurant (indoor)
Car - driving or traveling as a passenger, in the city (vehicle)
City center (outdoor)

Forest path (outdoor)

Grocery store - medium size grocery store (indoor)
Home (indoor)

Lakeside beach (outdoor)

Library (indoor)

Metro station (indoor)

Office - multiple persons, typical work day (indoor)
Residential area (outdoor)

Train (traveling, vehicle)

Tram (traveling, vehicle)

Urban park (outdoor)
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Some state of the art approaches combine
large-dimensional features and SVMs

(Geiger, 2013) Large-scale audio feature extraction and SVM for acoustic scene classification. 6,553 dim
(Metze, 2014) Improved Audio Features for Large-scale Multimedia Event Detection. 4,096 dim
(Rakotomamonjy,2016) Enriched Supervised Feature Learning for Acoustic Scene Classification. 2,000 dim
(Zhang, 2017) Learning Audio Sequence Representations for Acoustic Event Classification. 6,373 dim

(Arandjelovic, 2017) Look, Listen and Learn. 6,144 dim

Train/Test Acoustic
ll‘lll » non-linear —» Scene
SVM Classification
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SVMs may employ nonlinear functions, but the
computation complexity increases

Kernel Trick K(xi,x;j) = (9(xi), ¢(x;)) Vi,
o /o0
oo o)° Kernel matrix complexity:
o P4
Training O(k?n), Testing O(kn)
Input Space Feature Space

k= number of samples

¢ : R" > R? (n<<q)

n= dimensionality of features
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Random Features

Consist of mapping the input/original features to a randomized lower-dimensional
feature space.

Then, the RFs are passed to a linear SVM to approximate a nonlinear SVM.

Compute Train/Test Acoustic
||||||||| —> random - linear P Scene
features SVM Classification

(Rahimi, 2008) “Random features for large-scale kernel machines”
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Function to compute Random Features

K(xi,xj) = (¢(xi) , ¢(x5)) = (Prr(Xi), Prr(X;)) Vi, J

Prr(x) = \@COS (Wx + b)
booh 4

Input features Fixed value Kernel Uniform
dependent distribution
W : MxN b : Mx1
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Random Features for shift-invariant kernels

Kxi+z,x2+4+2z) = K(xi1,Xx2) W
Gaussian Laplace Cauchy
wij ~ N(0,27) w;; ~ Cauchy(0,~) w;; ~ Laplace(0, y)
s ; x
K(x1,x2) = exp(—7lx: —xa3) K(x1,x2) = exp(—7[x1—xaf1) K(x1,x2) = L[l T ap——



SVM prediction with Random Features

f(Xtest) = Z ;YKo (Xi, Xtest) + 0 keep {«;, v, X;,0}

f(Xtest) — WT(I)RF (Xtest) + 0 keep {w7 seed 75}
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Compare performance with/without Random Features

Train/Test Acoustic

||I|||‘|| —>- » non-linear =  Scene
SVM Classification

Compute Train/Test Acoustic

||I|||I|| —>.> randkom —» linear —»  Scene
features SVM Classification
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Experimental setup

Audio: 3-5 minutes duration from 15 scenes (e.g. bus, park, library)

Input features: 6,553 dims, cepstral, spectral, energy related, voicing, functionals
(Geiger, 2013)

Random Features: approximate Gaussian, Laplacian, Cauchy
Classifier: SVM with Gaussian, Laplacian, Cauchy

Metric: Accuracy
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Nonlinear SVM outperformed MLP baseline

Acoustic scene | Baseline | Gaussian Kernel | Laplacian Kernel | Cauchy Kernel
Beach 75.3 % 78.8 % T72% 77.9 %
Bus 71.8 % 93.6 % 92.0 % 92.3 %
Cafe/Restaurant | 57.7 % 76.9 % 82.7 % 78.5 %
Car 97.1 % 94.9 % 94.2 % 95.5 %
City center 90.7 % 91.0 % 92.3 % 89.4 %
Forest path 79.5 % 89.1 % 85.9 % 87.2 %
Grocery store 58.7 % 74.7 % 74.7 % 74.0 %
Home 68.6 % 66.3 % 67.3 % 66.3 %
Library 51 % 65.7 % 58.3 % 65.1 %
Metro station 91.7 % 82.7 % 83.7 % 83.3 %
Office 99.7 % 89.7 % 92.9 % 90.4 %
Park 70.2 % 65.1 % 61.5 % 60.9 %
Residential area | 64.1 % 65.7 % 68.3 % 63.5 %
Train 58.0 % 57.7 % 65.7 % 61.9 %
Tram 81.7 % 82.7 % 84.3 % 81.7 %
| Overall 74.8 % 78.3 % 78.8 % 719 %
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For RFs, as M increases, performance approximates
nonlinear kernels
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For RFs, as M increases, performance approximates
nonlinear kernels

‘25 '26 I27 ‘28 ‘29 '210 I211 '212
M

Dimensionality | Gaussian Kernel | Laplacian Kernel | Cauchy Kernel

6,553; >212 | 78.3 % 78.8 % 77.9 %
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For RFs, as M increases, performance approximates

37%

nonlinear kernels
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Dimensionality | Gaussian Kernel

Laplacian Kernel

Cauchy Kernel

6,553; >2'
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78.3 % 78.8 % 71.9 %
77.2 % 75.8 % 76.9 %




Outline

Introduction and Method
Experiments and Results

Ongoing work

) Electrical & Computer
A ENGINEERING



Discretize random features (Hashing) to change
real-valued vectors into bits

Hashing Trick

Abelino Jimenez, Benjamin Elizalde, Bhiksha Raj, “Acoustic Scene Classification Using Discrete
Random Hashing for Laplacian Kernel Machines”, in submission to ICASSP 2018
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Discretize random features (Hashing) to change
real-valued vectors into bits

Hashing Trick % ; """""""""""""""""""""""""""""
1 1 54553+ ;1_
Hau(x) = —= h(Ax +U) ,

VM

Abelino Jimenez, Benjamin Elizalde, Bhiksha Raj, “Acoustic Scene Classification Using Discrete
Random Hashing for Laplacian Kernel Machines”, in submission to ICASSP 2018
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Reduces representation up to six orders of
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magnitude

Method Accuracy | # of Bits
DCASE Challenge 74.8% .
Laplacian Kernel 78.6% > 218
Random features M = 2'* 75.8% e
Hashing M = 22 75.2%




Summary

Random features with linear SVM approximates well nonlinear SVM.
RFs reduced dimensionality by 37% with minimal loss of performance.
Hashing can also reduce storage up to 6 orders of magnitude.

Allows bit-based operations (XOR for similarity)

Speeds up transmissions and processing (self-training, boosting)
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