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Background

Neuroevolution methods:
● Evolution of artificial neural networks using 

genetic algorithms
● Evolving only weights or weights together with 

topology (TWEANNs, Topology and Weight 
Evolving Artificial Neural Networks)

● Direct or indirect encoding
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Neuroevolution

● Used mostly in simulated robotics and 
automated computer game play

● Tricky but small problems, e.g., simulated robot 
in deceptive maze

● Rarely seen in classification or detection tasks
● No learning, no gradients need to be computed
● Glorified random search?
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Motivation

Potential application in robotics

● Small autonomous robots
● Emulating e.g. airborne insects
● General purpose audio processing system 

might be available
● Many tiny classifiers/detectors needed
● (Honey bee brain: 1 mm3 - 960,000 neurons)
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Menzel, R., & Giurfa, M. (2001). Cognitive architecture 
of a mini-brain: the honeybee. Trends in Cognitive 
Sciences, 5(2), 62-71.



  

Inspiration

Ecological psychology (James J. Gibson):
● Anti-representational stance with regard to all 

perception
● The perceptual processing of animals 

(including humans) tunes in on relevant 
features in the environment through adaptation

● Only key features need to be tracked, no 
representation of the environment needed

● Perceptual system operates as a dynamical 
system   
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Research question & hypotheses

Inquiry:
● Can neuroevolution methods be used to 

develop parsimonious but still accurate audio 
event classifiers/detectors? 

Hypotheses:
● Successful small (but probably deep) neural 

networks can be evolved with reasonable 
computational effort

● Performance not able to match deep learning 
(DNN, RNN, CNN, LSTM, BGRU, …)
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How to test hypotheses?

● Performance in DCASE challenge, Task 3, 
Sound event detection in real life audio

● Unmodified real world recording as e.g. a robot 
would experience it

● Polyphonic
● And the best deep learning systems as 

competitors
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Method



  

Feature extraction

Wavelet-based scattering transform 

● Window length of 372 ms; one channel only
● Default audio settings 520 coefficients

K-means clustering along the coefficients 
● Time samples treated as input variables, 

coefficients as observations 
● Centroids used as the required dimension-

reduced data representation 
● k = 17

Wavelet-based scattering transform 

● Window length of 372 ms; one channel only
● Default audio settings 520 coefficients

K-means clustering along the coefficients 
● Time samples treated as input variables, 

coefficients as observations 
● Centroids used as the required dimension-

reduced data representation 
● k = 17

Mallat, S. (2012) “Group invariant scattering,” Communications on 
Pure and Applied Mathematics, vol. 65, no. 10, pp. 1331– 1398



  

Feature extraction

Channel differences  
● From short-term FFT spectrum (window 

length = 372 ms)
● Averaged over all spectral coefficients

Resulting dimensionality
● 17 + 1

Downsampling
● Both feature types downsampled to 1 Hz 
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Foundation: NEAT

● NEAT algorithm (NeuroEvolution of Augmenting 
Topologies) 

● Direct encoding
● Starts with minimal network
● Grows the networks using crossover and 

mutations
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✗ Stanley, K. O. and Miikkulainen, R. (2002) “Evolving neural 
networks through augmenting topologies, ”Evolutionary 
Computation, vol. 10, no. 2, pp. 99–127. 

✗ Stanley, K. O. and Miikkulainen, R. (2004) “Competitive 
coevolution through evolutionary complexification,” Journal 
of Artificial Intelligence Research, vol. 21, pp. 63–100.



  

Foundation: NEAT

● Fitness determination via loss function
● Fittest networks (typically top 80%) either

● enter next generation unchanged (elitism) or
● become parents of next generation 

(crossover) or
● enter next generation in a mutated form
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Foundation: NEAT

NEAT protects more complex networks from early 
elimination through 'speciation': 

● Different networks (both topology and 
weights count) are assigned to different 
species

● Have to compete only within species
● Historical markers allow avoiding topology 

analysis
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New algorithm: J-NEAT

● Original NEAT not suitable for classification and 
event detection with larger data sets 

● Modifications 
● that adapted aspects of the original NEAT 

algorithm within its general paradigm
● that extended NEAT and changed its nature

● Only a selected few of the latter described in the 
following
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New algorithm: J-NEAT

● Network layers are determined (fast recursive 
algorithm)

● Activation function also subject to mutation
● Break complex classification/detection problem into 

smaller partial problems: cooperative co-evolution 
✗ Three populations evolve simultaneously 
✗ Each population → one third of the input at each 

sample point
✗ Cooperation: Ad-hoc formed triplets of networks 

that together deliver classification output for 
each sample → joint fitness
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Procedure and parameters

● 400 individuals per population
● 500 generations
● 250 constraint randomly selected input samples 

simultaneously evaluated at each step (~ mini-
batch)

● 44 consecutive steps evaluated (→time series, 
recurrent nodes)

● Also tested a version without cooperative co-
evolution

● And for comparison: Minimal feed-forward network 
(learning vs evolving)
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Networks

'people walking' detector (1): 'people walking' detector (1): 
● Blue lines: forward connections 

(light blue negative, dark blue 
positive weights)

● Red/orange lines: recurrent 
connections (orange negative, red 
positive weights).

● Line thickness: relative magnitude 
of the weight  

● Input nodes: green, 
● Bias nodes: dark purple 
● Output node: yellow. 
● Letters coding the activation 

function, where S = sigmoid, St = a 
steeper sigmoid function used in 
NEAT, T = tanh, I = identity, R = 
rectified linear, RL = leaky rectified 
linear and P = softplus.
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Networks
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Ensemble evolution

Best 'people walking' detector per generation: 

[Show movie]
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Development data

Four fold evaluation treated as single experimentFour fold evaluation treated as single experiment

Method Segment ER Segment F1 Event ER Event F1

Baseline 0.72 51.40 3.30 6.74

J-NEAT 
ensemble

0.73 49.24 1.46 6.46

J-NEAT plain 0.72 50.55 1.37 5.66

Single-layer 
FFN

0.69 56.47 1.40 5.85



  

Challenge data

Method Segment ER Segment F1 Rank ER Rank F1

Baseline 0.936 42.8 19 8

J-NEAT 
ensemble

0.898 44.9 15 1

J-NEAT plain 0.891 41.6 14 12

Single-layer 
FFN

1.014 43.8 20 3



  

Discussion

● First hypothesis confirmed:
✗ J-NEAT was able to evolve operational 

classifiers/detectors
● Second hypothesis not confirmed

✗ The evolved systems could indeed match the 
performance of the much larger deep neural 
networks  

● Computational effort: All four training folds and the 
full data set for the challenge → ~48 hours on a 4-
core CPU of Dell Linux desktop machine with only 3 
parallel workers
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Future research

● Systematic hyper-parameter testing
● Evaluation of variability
● Interleave evolutionary phases (weights and 

topology) and learning phases (weights)
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Conclusion

It works!It works!
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