cochlear.ai

Ensemble of Convolutional Neural Networks for Weakly-Supervised Sound Event Detection using Multiple Scale Input

DCASE Workshop, 16. November. 2017

Donmoon Lee^{1,2}, Subin Lee^{1,2}, Yoonchang Han², Kyogu Lee¹

¹Music and Audio Research Group, Seoul National University, Seoul, Korea ² Cochlear.ai, Seoul, Korea

- Motivation
- Our Approach
- Proposed System
- Experiments
- Results
- Conclusion

cochlear.ai MAR

Large-Scale Weakly Supervised Sound Event Detection for Smart Cars

Task A : Audio Tagging

- Multi class classification problem for 17 classes

• Task B : Sound Event Detection

- Multi class classification with timestamp
- Training set does not include time information

cochlear.ai MAR

Motivation

In automotive environment, the auditory perception ability is important

- Hearing can detect events in any direction
- The more information we have, the fewer the accidents
- It is the first large-scale learning problem for audio
 - The amount of data is an important factor in machine learning

cochlear.ai MAR

Our Approach

- We use multiple models with various length of the input audio
 - the global-input (the entire clip), the separated-input (a portion of clip)
- We use background subtraction as preprocessing to remove stationary background noise

cochlear.ai MAR

We construct the system that find sound events in 1-second window

Our Approach | Network Design

The input-output structure is one of the most difficult design factors Conventional approaches use all or an part of audio clip as input -- The the optimal size of analysis window is not yet known

cochlear.ai MAR

Our Approach | **Background Subtraction**

To reduce noise, we introduce a classical signal processing method that subtracts the median value from the specific time window

 The median values of Mel-spectrogram for each frequency bin are calculated and subtracted from the original one

Original Mel-spectrogram

cochlear.ai MAR

Mel-spectrogram with BS

event in 1-second window

cochlear.ai MAR

Proposed System | Event Probability Matrix

The various results corresponding single probability matrix

- The shape of probability matrix is (17 x 10) which correspond to the index of label and the time

cochlear.ai MAR

The various results corresponding to one clip are converted into a

Proposed System | **Ensemble**

How to use the global-input model

- It can be used like any other models (ClipAvg), or it can have the greatest weight than any other models (ClipGate)

Ensemble methods for ensemble single models

- Mean probability or weighted mean probability
- Weights for mean probability is chosen by iteratively adding a model that maximize the performance at that time

cochlear.ai MAR

Experiments | Data Set

Subset of Google AudioSet

- Up to 10 seconds of audio clips —
- 51,172 training and 488 test set
- The training set includes 56,131 labels for 17 classes
- There is a heavy class imbalance in the training set

cochlear.ai MAR

Experiments | Audio Preprocessing

- Exclude the sample whose amplitude is always zero (14 clips)
- Clips which shorter than 10-second are are zero-padded to equalize length (10,785 clips)
- The amplitude of the audio signal normalized to the full-range
- The signals are transformed to 128-bin log Mel-spectrogram
- 2,048 fft points and hop size of 431 or 460
- (Additional) Background Subtraction

cochlear.ai MAR

Experiments | Network Architecture

The global-input model (data shape)

Audio Input	(1, 441000)		
Mel-spectrogram	(1, 128, 1024)	-	Doul
Double_Conv. block			
4 x 4 Max-pooling	(64, 32, 256)		
Double_Conv. block			3
4 x 4 Max-pooling	(64, 8, 64)		
Double_Conv. block			
2 x 4 Max-pooling	(64, 8, 16)		3
Double_Conv. block			
2 x 4 Max-pooling	(64, 4, 4)		
Double_Conv. block			
GlobalAveragePooling	(1024)		
Output	(17)		

cochlear.ai MAR

The separated-input model (data shape)

Results

Background subtraction

- almost same result for both tasks _
- BS with long time window degrades performance significantly
- Ensemble
 - useful for subtask B, but not for A -

cochlear.ai MAR

Networks	Subtask A	Subtasl	
	F-1	ER	
Baseline (MLP)	.1310	1.020	
10-second input (w/BS)	.4745 .3378)	-	
1s-segmented input (w/BS)	.4125 (.4373)	.7963 (.8	
2s-segmented input (w/BS)	.4229 (.4316)	.8071 (.8	
3s-segmented input (w/BS)	.4538 (.4561)	.7546 (.7	
4s-segmented input (w/BS)	.4304 (.4313)	.7633 (.7	
5s-segmented input (w/BS)	.4335 (.3588)	.8028 (.8	
MeanProb of 5 models (w/BS)	.4408 (.4448)	.7667 (.7	
MeanProb of 10 models	.4430	.7475	
ClipAvg in 5 best models	.4762	.7167	
ClipGate in 5 best models	.4745	.7287	
*Ensemble selection (F1)	.5139	.7477	
*Ensemble selection (ER)	.4831	.7021	
*Ensemble selection (F1-ER)	.4885	.7089	

Results | Submission Results

The better performance observed in evaluation set

The ensemble method does not change the system significantly

Networks

Baseline (MLP)

ClipAvg in 5 best mode ClipGate in 5 best mode Ensemble selection (FEnsemble selection (E) Ensemble selection (F1-

cochlear.ai MAR

	Subtask A	Subtask B	
	F-1	ER	
	.182	.930	
els	.523	.670	
lels	.523	.670	
71)	.526	-	
(R)	-	.670	
ER)	.521	.660	

Conclusion

 We used approach that using a larger window for time stamp prediction

We proposed the system that use the models with multi-scale input

 We proposed background subtraction as a preprocessing method to find a new feature representation in the input signal

 Our proposed models have been successfully trained, and the ensemble allows us to find events in a one-second window.

cochlear.ai MAR

cochlear.ai

Ensemble of Convolutional Neural Networks for Weakly-Supervised Sound Event Detection using Multiple Scale Input

DCASE Workshop, 16. November. 2017

Presenter : Donmoon Lee

E-mail: <u>dmlee@cochelar.ai</u>

