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Introduction

» Motivation:
> Acoustic Scene Classification (ASC) is challenging
and useful
> Wavelets are efficient in analysis of non-stationary
signals

» Contributions:

> Explore the performance of optimised features
extracted by Wavelet Transformation (WT)

and Wavelet Packet Transformation
(WPT)

Wavelet Features

» The WPT Energy (WPTE) is defined as:
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where w; ., are the coeflicients calculated
by WPT from the analysed signal at the
subspace €2; ;. NN Is the total number ot
wavelet coefficients in the k-th subband at
the 7-th decomposition level.

» The WT Energy (WTE) is defined as:
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where w; are the coeflicients generated by
DW'T at the 7-th decomposition level.
Furthermore, the mean, variance,
waveform length (the sum of the absolute
differences), and entropy are calculated
from the above vector as low level

descriptors (LLDs).

» Totatlly, there are 2Jme=tt — 1 WPTE
based LLDs, and 4 X (Jmaz +1) WTE
based LLDs. J,,q44 1S the maximum level
for wavelet decomposition.
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» Wavelet Energy Features (WEF):

WPTE+WTE.
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Classifiers

Figure: Diagram of a Grated Recurrent Unit.

» Support Vector Machines (SVMs)
» Gated Recurrent Neural Networks (GRNNs)

» Decision Fusion by Margin Sampling Value (MSV)
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Figure: Diagram of a Decision Fusion Process.
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Dataset

DCASE 2017 Database:

» 312 segments of 10 seconds in each of the 15 classes
» total duration is 13 hours

» 15 acoustic scene classes: beach, bus, cafe/restaurant, car, city centre, forest path,
grocery store, home, library, metro station, office, park, residential area, train, and
tram

Experimental Setup

= SVMSI

> [inear kernel
> C-value is optimised to 0.01, 10 and 0.1 for

» features (functionals applied to LLDs):
> COMPARE: 6373 features
> WPTE: 1020 features
> WEF: 1148 teatures

Experimental Results
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Table: Performance comparison between different feature set by SVMs.

accuracy |%]

Fold1l Fold2 Fold3 Fold4 Mean

ComParE 6.8 768 b7 825 779
WPTE 76.1 759 728 783 5.7
WEF 799 790 72 771 778
ComParE4+WPTE 80.6 823 799 8.5 821
ComParE+WEF 82.3 839 81.7 837 829
WPTE+WEF 80.1 798 764 80.0 79.1
ComParE+WPTE+WEFEF 824 839 &81.7 84.7 83.2

Table: Performance comparison between different feature sets by GRNNSs.

accuracy [%]

Fold1l Fold2 Fold3 Fold4 Mean

ComParE 793 748 770 K810 780
WPTE 3.6 V1.8 V1.1 41 72.6
WEF 77 76.6  73.1 76.8 76.0
ComParE+WPTE 821 790 80.1 848 81.5
ComParE+WEF 832 812 81.3 847 82.6
WPTE+WEF 85 772 743 776 769
ComParE+WPTE4+WEF 826 818 810 850 82.6
Conclusion

» wavelet features can perform well for ASC

» wavelet teatures help improve the final performance of ASC when

fused with temporal and spectral features

» tuture work:
> evaluate system in noisy conditions
> feature selection and enhancement
> use more sophisticated deep models
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ComPark, WPTE, and WEF, respectively

» GRNNs:
> two-layer: 120-60

> learning rate: 0.0002, drop out rate: 0.1, epoch:

50
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