

Introduction

► Motivations:

- ▷ **2D** spectrograms are applied successfully in acoustic scene classifidcation
- ▶ Wavelet transform incorporates multiple scales and localisations

► Major Contributions:

- ▷ Use **scalograms** to extract powerful representations
- ▷ Combine pre-trained CNNs with GRNNs by transfer learning

Deep Sequential Images

► The short-time Fourier transform (STFT) for a signal x(t) is defined by,

$$X(\tau,\omega) = \int_{-\infty}^{\infty} x(t)\omega(t-\tau)e^{-j\omega t}, \qquad (1)$$

where t: time, $\omega(t)$: window function, τ : time index.

• The bump wavelet transform is defined by,

$$\Psi(s\omega) = e^{\left(1 - \frac{1}{1 - (s\omega - \mu)^2/\sigma^2}\right)} \mathbf{1}_{[(\mu - \sigma)/s, (\mu + \sigma)/s]}, \quad (2)$$

where s: scale, ω : window, μ and σ : two constant parameters.

► The *morse* wavelet generation is defined by,

$$\Psi_{P,\gamma}(\omega) = u(\omega)\alpha_{P,\gamma}\omega^{\frac{P^2}{\gamma}}e^{-\omega^{\gamma}}, \qquad (3)$$

where $u(\omega)$: unit step, ω : window, $\alpha_{P,\gamma}$: a normalising constant, P: time-bandwidth product, γ : symmetry.

Figure: Images of the first audio sequence of "a001_0_10.wav" with a label residential area.

		2>
	2	\times
_	3	\times
_	3	\times
	3	\times

Out

Deep Sequential Image Features for Acoustic Scene Classification Zhao Ren^{1,2}, Vedhas Pandit^{1,2}, Kun Qian^{1,2,3}, Zijiang Yang^{1,2}, Zixing Zhang², Björn Schuller^{1,2,4} ¹Chair of Embedded Intelligence for Health Care & Wellbeing, Universität Augsburg, Germany ²Chair of Complex & Intelligent Systems, Universität Passau, Germany ³MISP Group, MMK, Technische Universität München, Germany ⁴GLAM – Group on Language, Audio & Music, Imperial College London, UK

Feature Extraction and Classification

Figure: Framework of our proposed system.

Table: Configurations of the VGG16 CNNs.

- ▶ Feature Extraction:
- ► Classification: ▷ Gated Recurrent Neural Networks

Database

► DCASE 2017 database:

 \triangleright 312 segments of 10 *s* from 52 minutes of audio recordings ▷ 15 classes: beach, bus, cafe/restaurant, car, city center, forest path, grocery store, home, library, metro station, office, park, residential area, train, and tram ▷ An unlabelled evaluation set and four folds, each of which contains a training set and a development set

decision Decision

connected layer

→Class Label

Experimental Results

accuracy [%]	Fold1	Fold2	Fold3	Fold4	Mean			
(a) STFT								
epoch 30	77.9	72.5	73.1	79.3	75.7			
epoch 50	79.2	74.7	74.3	77.7	76.5			
epoch 70	77.1	75.8	72.9	77.4	75.8			
(b) <i>bump</i> wavelet								
epoch 30	74.5	75.4	73.9	77.2	75.2			
epoch 50	73.6	72.9	73.6	73.2	73.3			
epoch 70	69.7	73.4	72.6	72.1	72.0			
(c) $morse$ wavelet								
epoch 30	74.5	75.4	73.9	77.2	75.2			
epoch 50	73.6	72.9	73.6	73.2	73.3			
epoch 70	69.7	73.4	72.6	72.1	72.0			

accuracy [%]	Fold1	Fold2	Fold3	Fold4	Mean
STFT+bump	82.6	79.5	77.5	80.9	80.1
STFT+morse	81.1	80.0	76.5	81.5	79.8
bump+morse	76.7	77.5	76.0	77.5	76.9
STFT+bump+morse	82.6	80.7	78.7	81.5	80.9

Conclusions

- ► Classify deep STFT and wavelet features on GRNNs
- ► Wavelet features are helpful to increase the accuracy
- ► Future work:
- ▷ Investigate which CNNs infer the best representations Experiment with data augmentations of the training data

Acknowledgements

This work was partially supported by the European Union's Seventh Framework under grant agreements No. 338164 (ERC StG iHEARu), and the China Scholarship Council (CSC).

▷ VGG16 Convolutional Neural Networks (CNNs)

▷ Decision Fusion by Margin Sampling Value (MSV)

Table: Performance comparison of different epochs of GRNNs(120-60), *learning*

Table: Performance comparison of different combinations of the three feature sets by

7HEAR(((U)