Multi-Temporal Resolution Convolutional Neural Networks for Acoustic Scene Classification

Alexander Schindler alexander.schindler@ait.ac.at

> **Thomas Lidy** lidy@ifs.tuwien.ac.at

Andreas Rauber rauber@ifs.tuwien.ac.at

Motivation and Goal

- acoustic scenes are composed of spectral texture and sequence of acoustic events
- · common CNN-based approaches use single statically defined analysis window
- · wrong size of this analysis window can either · prevent from having sufficient timbral resolution
 - · fail to recognize acoustic events with longer patterns

Audio Pre-processing

(Audio File)→ Mono → Mel →(NN Log

- 10 times 80x80 log-amplitude scaled Mel-Spectrograms per audio file
- increasing STFT window sizes: 512, 1024, 2048, 4096, 8192 (50% overlap)

Models Models

- Data Augmentation
 - time-stretching place-wise remixing
 - pitch-shifting split-shuffle-remix

Neural Network Architecture

Multi-Resolution Model

- one parallel architecture for each
- temporal resolution fully connected output layers are
- concatenated · intermediate fully connected layer
- with 512 · learn dependencies between sequences
- of spectral and temporal representations of the different temporal resolutions

- two pipelines of CNN Layers capturing:
- · frequency domain relations
- temporal relations
- each pipeline
 - uses the same input segment • consecutively filters and pools in the vertical axis ('timbre')
- horizontal axis ('rhythm')
- merge layers by concatenation • add fully connected layer and
- Softmax output
- · classification of an audio file by: • maximum probability summing

Combined Max-Average-Pooling

- · Max-Pooling dominated by peek values (attack)
- · Average-Pooling dominated by smoothed values (decay)
- Max-Average-Pooling
 - apply both operations and stack featuremaps
 - · adds information without increasing number of trainable parameters

	input 80 x 80	
Conv - 6 - 10 x 23 - ELU]	Conv - 6 - 21 x 10 - ELU
Max-Pooling 2 x 2	ī i	Max-Pooling 2 x 2
Conv - 12 - 5 x 11 - ELU	ī .	Conv - 12 - 10 x 5 - ELU
Max-Pooling 2 x 2	Ĵ .	Max-Pooling 2 x 2
Conv - 24 - 3 x 5 - ELU	ī	Conv - 24 - 5 x 3 - ELU
Max-Pooling 2 x 2	Ĵ	Max-Pooling 2 x 2
Conv - 48 - 2 x 4 - ELU	1	Conv - 48 - 4 x 2 - ELU
Max-Pooling 1 x 5	Ĵ	Max-Pooling 5 x 1
	concatenate	
	Dropout 0.25	

station

· Grouping and averaging the predictions for a file of all sinincrease their performance

• Max-Average-Pooling improved DCASE challenge results for multi-resolution model by 3.25% (final result 90.54%)

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Evaluation and Results

fft win size	instance raw	grouped raw	instance augmented	grouped augmented
512	64.14 (2.84)	70.32 (2.96)	69.06 (4.33)	76.63 (4.44)
1024	66.32 (2.58)	71.27 (3.06)	71.70 (5.46)	77.06 (5.46)
2048	66.83 (1.52)	70.23 (1.99)	76.24 (2.53)	80.46 (3.30)
4096	69.50 (2.83)	71.92 (3.23)	79.20 (3.03)	81.66 (3.29)
8192	69.66 (2.58)	71.47 (2.95)	82.26 (2.40)	83.73 (2.63)
grouped single		73.12		83.19
multi-res multi-res do	72.23 (4.15) 69.39 (2.77)	74.30 (4.81) 72.05 (3.26)	85.22 (2.11) 82.51 (2.37)	87.29 (2.02) 86.04 (3.03)

forms best single-resolution model by 3.56%

• model harnesses dependen

cies between temporal resolu tions - examples train, metro-

· lower temporal resolutions perform better than higher

gle-resolution models does not

multi-resolution model outper-