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Abstract

We investigated two approaches for the acoustic scene classification
task. Firstly, we used a combination of features in the time and
frequency domain and a hybrid Hidden Markov Model-Support Vec-
tor Machines (HMM-SVM) classifier to achieve an average accuracy
over 4-folds of 80.9% on the development dataset and 61.0% on the
evaluation dataset. Secondly, by exploiting data augmentation tech-
niques and using the whole segment (as opposed to splitting into
sub-sequences) mel-spectrogram as an input, the accuracy of our
Convolutional Neural Network (CNN) system was boosted to 95.9%.
However, due to the small number of kernels used for the CNN and
a failure of capturing the global information of the audio signals,
it achieved an accuracy of 49.5% on the evaluation dataset. Our
two approaches outperformed the DCASE baseline method, which
uses log-mel band energies for feature extraction and a Multi-Layer
Perceptron (MLP) to achieve an average accuracy over 4-folds of
74.8%.

Acoustic Scene Classification Framework

An Acoustic Scene Classification (ASC) framework includes the pro-
cess of audio signal acquisition, feature extraction and classification
(Fig.1). The detection module first segments the sound events from
the continuous audio signal. Then features are extracted to charac-
terize the acoustic information. Finally, classification matches the
unknown features with an acoustic model, learnt during a training
phase, to output a label for the segmented sound event.
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Figure 1: A typical Acoustic Scene Classification framework

HMM-SVM Approach

All audio files are transformed into the frequency domain through a
2048-sample Short-Time Fourier Transform (STFT) with 50% over-
lap. Each frame has a window size of 40 ms with a 20 ms hop size
from the next one. In our HMM-SVM approach, we firstly con-
verted the 24-bit depth stereo audio recordings to mono, then we
divided the spectrum into 40 mel-spaced bands, and the following
features are extracted for each band: Spectral Rolloff (SR), Spectral
Centroid (SC), Mel-Frequency Cepstral Coefficients (MFCC) (static,
first and second order derivatives) and Zero-Crossing Rate (ZCR).

I 39 MFCCs (static + first order derivative + second order
derivative)

IAverage ZCR
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We have aggregated all the features by taking the mean, variance
and skewness. Finally, we applied Sequential Backward Selection
(SBS) to select the most important features for each recording class.
The HMM-SVM model is shown in Fig.2. We used 3 hidden states
for the HMM (beginning, middle, end of a recording) and for the
SVM part we used the Radial-Basis Function (RBF) kernel and after
performing grid search, we found that the best parameters were σ
= 0.1 and C = 100.
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Figure 2: HMM-SVM architecture

CNN Approach

Environmental audio recordings have different temporal properties. In our CNN approach
we produced two additional recordings from the original ones, since there was a strong
need for more training data to be applied to the deep learning model, as following:

IGaussian noise over the 10 seconds; average time domain value of zero

IResampled the original signal from 44.1kHz to 16kHz

Hence the total training audio files of each fold were increased from 3510 to 10530 and
the testing from 1170 to 3510.
We used the mel-spectrogram with 128 bins which is a sufficient size to keep spectral
characteristics while greatly reduces the feature dimension. Each frame has a window size
of 40 ms with a 20 ms hop size from the next one. Our network architecture consists
of 4 convolutional layers (Fig.3). In detail, the first layer performs convolutions over the
spectrogram of the input segment, using 3x3 kernels.
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Figure 3: CNN architecture

Results

Tables 1 and 2 summarize the performance achieved by our methods and compare their
accuracy with the baselines.

Table 1: Performance comparison (averaged over 4-folds) between the DCASE2017 baseline based on GMM and our hybrid SVMHMM approach

Class
Baseline GMM

w/ MFCC feautres
(%)

Our approach SVM-HMM
w/ MFCC,

ZCR, SR. SC features
(%)

(development dataset)

Our approach SVM-HMM
w/ MFCC,

ZCR, SR. SC features
(%)

(evaluation dataset)
Beach 75.0 78.8 23.1

Bus 84.3 90.1 42.6

Cafe/Restaurant 81.7 68.3 58.3

Car 91.0 94.2 66.7

City center 91.0 91.3 77.8

Forest path 73.4 85.6 86.1

Grocery store 67.9 80.8 64.8

Home 71.4 74.5 94.4

Library 63.5 65.7 39.8

Metro station 81.4 89.1 92.6

Office 97.1 99.0 54.6

Park 39.1 59.0 20.4

Residential area 74.7 79.8 72.2

Train 41.0 63.8 81.5

Tram 79.2 85.6 39.8

Average 74.1 80.9 61.0

Table 2: Comparison of recognition accuracy between the proposed system and a baseline system based on Log-mel band energies and MLP for the DCASE
2017 dataset averaged over 4-folds

Class

Baseline
Log-mel band energies

MLP
(%)

Our System (with data augmentation)
Log-mel spectrogram

CNN
(%)

(development dataset)

Our System (with data augmentation)
Log-mel spectrogram

CNN
(%)

(evaluation dataset)
Beach 75.3 97.8 35.2

Bus 71.8 92.3 23.1

Cafe/Restaurant 57.7 96.2 58.3

Car 97.1 97.4 63.0

City center 90.7 99.6 90.7

Forest path 79.5 100.0 90.7

Grocery store 58.7 99.6 57.4

Home 68.6 98.3 61.1

Library 57.1 95.3 20.4

Metro station 91.7 92.3 38.0

Office 99.7 100.0 53.7

Park 70.2 90.6 25.9

Residential area 64.1 90.2 45.4

Train 58.0 93.2 59.3

Tram 81.7 97.0 48.1

Average 74.8 95.9 49.5

Both of our systems severely underperformed on the evaluation dataset. We attribute this
to a combination of inadequate feature extraction and model capacity. While our extracted
features were adequate enough to encode information present in the development set (and
thus lead to good development held out performance) they seem to have captured mostly
local information, or at least failed to encapsulate the global structure hidden in the data.
The performance of the system could significantly be improved, using the stereo and bin-
aural recordings. Finally, the relatively small capacity of our model (only 5 convolutional
kernels) played a significant role in the worsening of the model’s performance in the eval-
uation set.
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