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ABSTRACT

Sound events possess certain temporal and spectral structure in their
time-frequency representations. The spectral content for the sam-
ples of the same sound event class may exhibit small shifts due to
intra-class acoustic variability. Convolutional layers can be used to
learn high-level, shift invariant features from time-frequency repre-
sentations of acoustic samples, while recurrent layers can be used to
learn the longer term temporal context from the extracted high-level
features. In this paper, we propose combining these two in a con-
volutional recurrent neural network (CRNN) for rare sound event
detection. The proposed method is evaluated over DCASE 2017
challenge dataset of individual sound event samples mixed with ev-
eryday acoustic scene samples. CRNN provides significant perfor-
mance improvement over two other deep learning based methods
mainly due to its capability of longer term temporal modeling.

Index Terms— Sound Event Detection, Convolutional Neural
Network, Recurrent Neural Network, Machine learning

1. INTRODUCTION

The aim of sound event detection (SED) is to temporally locate and
label the sound event class(es) present in an acoustic signal. For an
SED task, a set of target sound event classes should be determined.
For instance, an SED task can be defined as the detection of dog
barking, door bell, and baby crying sounds for any given acoustic
signal. Recently, SED has been utilized in application areas such
as wildlife bird audio monitoring [1} 2], audio surveillance [3], and
multimedia event detection [4]].

Recently, the research on SED has been mainly shifted from
traditional classifier approaches such as Gaussian mixture mod-
els (GMM) - hidden Markov models (HMM) to deep learning
based methods such as feed-forward neural networks (FNN) [5. 6],
convolutional neural networks (CNN) [7], recurrent neural net-
works (RNN) [8]], and convolutional recurrent neural networks
(CRNN) [29]]. Feed-forward neural networks have the benefit of
higher expressional capability over nonlinear functions compared
to GMM-HMMs. However, their drawback is the fixed connections
(each weight is connected to a fixed pair of neurons) which makes
them less robust to slight spectral shifts in the acoustic features of
the same sound event class. These slight shifts are a major factor in
the inherent acoustic variability of sound event classes. This prob-
lem has mainly been overcome with the introduction of CNNs for
SED, however the temporal context that can be modeled with CNNs
is rather short. CRNN combines the long-term modeling capabili-
ties of gated recurrent unit (GRU) [10]] layers and the robustness of
CNN to small spectral shift variations.

There are several difficulties on developing SED systems to be
utilized in real-life environments. Some of these can be listed as the
inherent acoustic variability of the sounds belonging to the same
event class, overlapping (simultaneously occurring) sound events,
environmental noise, variability in the acoustic characteristics of the
background acoustic scene, and rarely occurring sound events.

The main problem encountered with the detection of the rare
sound events using neural networks is the data imbalance. To elab-
orate, in an SED task, the classifier is trained to learn the relation-
ship between the target class and its input representation, which is
composed of acoustic features extracted in short time frames of an
acoustic signal. During training, the classifier makes an estimation
for the class presence probabilities for each frame, and calculates
the error in the estimation through a loss function (which will be
used to update the classifier parameters). In a rare SED task, the
target class is not present in a significantly higher portion of time
frames of each signal. Unless the training procedure of the clas-
sifier is adjusted correspondingly, the classifier will be biased on
predicting “non-present” for all the frames, because it will reach
low error even if it fails to detect the frames where the target class
is present. Data imbalance is a very common problem in machine
learning and methods such as data augmentation using time stretch-
ing and block mixing [8]], oversampling [[11]] and synthesizing new
samples through generative methods [12] have been previously pro-
posed to limit the negative effect of data imbalance.

In this work, we propose to utilize CRNNSs for combined single-
class, rare SED in the presence of a real-life acoustic scene in the
background. The convolutional layers of CRNN are used to ex-
tract shift invariant features from the input time-frequency repre-
sentation. The gated recurrent layers are especially effective in de-
tecting rare sound events, because they can reset and update their
hidden/cell state to distinguish the features from a small number
of consecutive time frames (corresponding to a rare target event)
which are noticeably different from the features from the rest of the
acoustic signal (corresponding to the background). The proposed
CRNN method has been previously shown to provide state-of-the-
art accuracy in both real-life and synthetic SED datasets [9] and
QMUL bird audio detection challenge 2017 [2]. We follow the sim-
ilar CRNN architecture and procedure as in [9], with the exception
that we train separate CRNNSs for each class due to the combined
single-class approach. In addition, we slightly adjust the training
procedure according to the evaluation metric of the given SED task
(see Section . This work has a companion website atﬂ

The rest of the paper is organized as follows. The acoustic fea-
tures and the proposed CRNN method is explained in Section
In Section [3] the acoustic material, evaluation metric and the eval-

lwww.cs.tut.fi/~cakir/DCASE2017


www.cs.tut.fi/~cakir/DCASE2017

Detection and Classification of Acoustic Scenes and Events 2017

by Bkl . Input

Convolution

Frequency
max pooling

Stacking

Recurrent
layer
activations

) — Feed forward
layer
activations

Event activity
T predictions

Figure 1: Overview of the proposed CRNN. (1): Multiple convo-
lutional layers with max pooling in frequency axis, and stacking of
the features over frequency axis (2): Gated recurrent layers, (3):
feed-forward layer produces the event activity probabilities which
are then binarized in evaluation/usage case.

uation results of the proposed method compared with the baseline
methods is presented. Finally, our conclusions on this work are pre-
sented in Section @]

2. METHOD

2.1. System Overview

The used SED approach consists of sound representation and frame-
wise classification stages. In the sound representation stage, frame-
level acoustic features are extracted for each time frame in the
acoustic signal to obtain a feature matrix X € RFXT where F € N
is the number of features per frame and 7" € N is the number of
frames in the acoustic signal. In the classification stage, the task
is to estimate the probabilities p(y | X, ) for target output vec-
tory € RT, where y denotes the probability of the target event in
each frame and @ denotes the parameters of the classifier. Once the
method is to be evaluated or utilized in a usage case, the event ac-
tivity probabilities are typically binarized by thresholding, e.g. over
a constant, to obtain binary event activity predictions y € R”

The classifier parameters @ are trained by supervised learning,
and the target outputs y are obtained from the onset-offset annota-
tions of the sound event class. If the sound event class is present
during frame ¢, then y; will be set to 1, and O otherwise.

In this work, SED is conducted in combined single-class man-
ner, so the stages below are repeated separately for each class.
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2.2. Acoustic Features

The acoustic features used in this work are log mel-band energies,
as they have been shown to provide good performance on SED with
deep neural networks [2,16,19]. Each audio sample is divided into 40
ms frames with 50% overlap and 40 log mel-band energy features
are extracted from the magnitude spectrum of each frame. Each fea-
ture is then normalized independently to zero mean and unit stan-
dard deviation by using statistics calculated from the training data.

2.3. CRNN Architecture

The CRNN architecture used in this work consists of three main
blocks: (1) convolution block, (2) recurrent block, and (3) classi-
fication block. The illustration of the architecture is given in Fig-
ure[I] The input for the CRNN are the acoustic features (log mel-
band energies). In the convolution block, the input is fed to L.
consecutive convolutional layers with linear activation functions.
Each convolutional layer is followed by batch normalization per
feature map [13], a rectified linear unit (ReLU) activation function,
adropout layer [14]], and a frequency domain max-pooling layer. At
the end of the convolutional block, the extracted features over the
CNN feature maps are stacked along the frequency axis.

Convolutional layers provide robustness to frequency shifts
in the input features due to shared weight connections and max-
pooling operation, and this is crucial to overcome the problem of
intra-class acoustic variability for SED. However, as it has been
shown previously in other works [9, [15]], convolutional layers per-
form the the best when the filter size is small, and this means the
temporal context used in these layers is very short (typically less
than two hundred miliseconds).

In the recurrent block, these stacked features are fed to L,- GRU
layers where tanh and hard sigmoid activation functions are used for
update and reset gates, respectively. Each recurrent layer produces
outputs for each frame by using both the features extracted by the
convolutional layers (or the previous recurrent layers) and the pre-
vious frame activations as input. Dropout is applied on both the
inputs and the hidden state outputs of the recurrent layer [16].

GRU layers control the information flow through a gated unit
structure. For frame ¢, the total activation of GRU layer is a linear
interpolation of previous activation h;—; and the candidate activa-
tion fzt as .

htzut-ht,1+(1—ut)-ht (])
where u; denotes the update gate. Candidate activation hy is a func-
tion of h;_1, the GRU layer’s input x; and the reset gate ;. GRU
activation is mainly controlled by reset gate when the GRU layer’s
input x; is significantly different than in previous frames. When
reset gate is closed (r; = 0), the candidate activation does not in-
clude any contribution from h;_;. Fast response to the changes in
the input and the previous activation information is crucial for high
performance in rare SED, where the task is to detect a small of con-
secutive time frames where target event is present.

In the classification block, a feed-forward layer of single unit
with sigmoid activation function is used as the classification layer.
While computing the output of the classification layer, the same
weight and bias values are used over the recurrent layer outputs for
each frame. The contributions of GRU’s previous and candidate
activations to the classification output, namely c;—; and ¢, can be
computed as

ci—1 =w O (ug - hy—1)

) ~ 2
G=wo (1 —uy) - hye)
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Table 1: CRNN hyper-parameters for each target class.

Hyper-parameters ‘ Baby cry ‘ Glass break ‘ Gun shot

Le 3 3 3
pool size (5.4.2) (5:4.2) (5.4.2)
L, 1 3 1

# filters/units 96 160 32

# Parameters | 520K | 1750K | 59K

where w is the weight vector that connects GRU layer and the clas-
sification layer, and ® denotes element-wise multiplication. The
outputs of the classification layer are regarded as the presence prob-
abilities of the target class in each frame of the audio sample.

If the model is to be evaluated or utilized in a usage case, the
presence probabilities are binarized with a constant threshold of 0.5
to get the binary presence predictions. These predictions are further
post-processed with a median filter of length 540 ms.

3. EVALUATION

3.1. Acoustic Material

For the acoustic material, DCASE2017 challenge dataset has been
used and detailed information on the dataset can be found in Sec-
tion 4 of [17]. The dataset consists of samples from 15 different
everyday acoustic scenes (park, home, street, cafe, train etc.), some
of which are mixed with isolated recordings from at most one of the
three different target sound event classes: baby crying, glass break-
ing and gun shot. The isolated recordings are divided into segments
based on the signal energy levels, and the segments relevant to the
target class are selected by a human annotator. Mixing is done by
adding a segment to the 30-second long background acoustic scene
sample with a random time offset. The mean duration of the iso-
lated target sound event recordings is below 2.25 seconds for all
three classes and each isolated event is present at most once for
each mixed sample, making them active for only a short period of
time (hence the task name rare sound event detection).

For the development set, 2973 training, 298 validation and 1496
test samples (4767 total) are generated through the code repository
provided as a part of the DCASE challenge [18]. Although the prob-
ability of including isolated recordings in each mixed sample is set
to 0.5 as default in the code provided by the challenge, we increase
the probability of including target events from default 0.5 to 0.99
for training and validation samples. This change increases the per-
centage of the frames labeled as including a target event from 5%
to 8% in the training data, which helps to ease the problem of data
imbalance. This probability is kept at 0.5 for the test samples, as
suggested by the challenge organizers, to be able to compare the
development set results over the same conditions with other partic-
ipants. In the evaluation set, the training and validation samples
of the development set are combined into a single training set, test
samples are used as the validation set, and the system is evaluated
against an unseen set of 1500 samples (500 for each target class).

3.2. Procedure and Final Configuration

The CRNN is trained using Adam method for gradient based opti-
mization [19]]. Cross-entropy is used as the loss function. The net-
work is trained for a maximum of 200 epochs. After each epoch
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of training, validation set is evaluated for the event-based error
rate (see Section and the model at the epoch with the lowest
error rate is saved in the memory. This way, we aim to align the
training procedure with the evaluation metric of this work. If the
error rate does not decrease for 25 consecutive epochs, the training
is stopped and the last saved model is selected as the final model.
In order to decide the architecture to be used in the evaluation,
we run a hyper-parameter grid search and pick the architecture with
the lowest event-based error rate on the test set of the development
data. The fixed hyper-parameters for each experiment is as fol-
lows. We use 5-by-5 size feature maps in convolutional layers, and
dropout with probability 0.25 for both convolutional and recurrent
layers. The grid search covers the number of convolutional feature
maps (filters) / RNN hidden units (both are set to the same value)
{32, 96, 160}; the number of recurrent layers {1, 2, 3, 4}; and the
number of CNN layers {1, 2, 3 ,4} with the following frequency
max-pool sizes after each convolutional layer {(8), (4, 2), (2, 2, 2),
(5,2,2),(5,4,2), (5, 2,2, 1), (5,2, 2, 2)}. The best performing
CRNN hyper-parameters for each target class are listed in Table[I]

3.3. Baseline

In this work, we compare the performance of CRNN with two base-
line methods using deep learning with the same input features. The
first baseline method is a deep FNN with two hidden layers of 50
units, which is also the official baseline method for the challenge.
The input features differ slightly in the sense that the extracted 40
log mel-band energy features are concatenated for five consecutive
frames to gather temporal context, creating a feature vector with
200 entries. The second baseline method is the CNN. While select-
ing the CNN architectures to be used in evaluation, a very similar
grid search procedure has been applied as explained in Section [3.2]
the only difference being that the recurrent layers of the CRNN are
replaced with the feed-forward layers to obtain CNN architecture.

3.4. Evaluation Metric

The official evaluation metric used in DCASE2017 challenge task
2 is the event-based error rate (ER) with onset tolerance of 500 ms.
ER is the sum of insertion, deletion and substitution rates. ER is
calculated as explained in detail in [20].

3.5. Results

The models used in the evaluation (hence the challenge submission)
have been selected as the following. As a part of hyper-parameter
grid search, 84 experiments have been run on development data for
CNN and CRNN each. The evaluation models are then selected
based on ER on test set of development data. We present four dif-
ferent CRNN methods for the rare SED challenge which are labeled
as:

e CRNN-1: the architecture with the lowest ER on average
over three classes. This model also happens to have the low-
est ER on the “’baby cry” class, and its parameters are given
in the corresponding column of Table

o CRNN-2: the ensemble of the seven best architectures with
the lowest ER on average over three classes.

e CRNN-3: the architecture with the lowest ER for each of the
three classes. The parameters for each of the architectures
are given in Table[T]
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Table 2: Event-based error rate for the baseline FNN and CNN
methods and the proposed CRNN on the test set of evaluation data.
Method indices are explained in Section 3.3

Evaluation
Method Baby cry  Glass break  Gun shot ‘ Average
FNN 0.80 0.38 0.73 0.64
CNN-1 0.46 0.13 0.58 0.39
CNN-2 0.38 0.15 0.53 0.35
CNN-3 0.46 0.14 0.55 0.39
CNN-4 0.42 0.14 0.53 0.36
CRNN-1 0.27 0.07 0.20 0.18
CRNN-2 0.18 0.10 0.23 0.17
CRNN-3 0.27 0.14 0.47 0.29
CRNN-4 0.21 0.11 0.24 0.19

e CRNN-4: the ensemble of seven best architectures with the
lowest ER for each class.

e CNN methods have been obtained in the same fashion to
CRNN methods as explained above.

The ensemble method is conducted as follows. Among the
seven selected architectures, if four or more predict that the target
class is not present in a given sample, then the final decision on the
sample is that the target class is not present. Otherwise, the onset
and offset values of the target class are selected as the median of
the predicted onset and offset values for the sample. This ensemble
method is used in order to get more reliable predictions over the on-
set and offset values and to filter the outlier predictions among the
architectures with lowest ER.

The event-based ER results for the proposed and baseline meth-
ods have been presented in Table |Zl CRNN:s clearly provide bet-
ter performance compared to both baseline methods for all target
classes. In addition, by utilizing ensemble methods for both CNN
and CRNN, the performance can be further improved, however this
comes with an increased computational cost due to running sev-
eral architectures in parallel. With the experiments for CRNN-1
method, we aimed to show if it is possible to find a single architec-
ture that performs well for all three classes. For the development
data, CRNN-1 provides comparable performance (0.16 vs 0.14 ER)
with CRNN-3, where the best architecture is selected for each tar-
get class. For the evaluation data, as presented in Table[2] CRNN-1
performs even better than CRNN-3.

Regardless of the method, highest performance is obtained for
glass break. Although the best performing architectures for each
class differ significantly in the number of parameters (see Table [T},
the median number of parameters among the seven best architec-
tures are 687K, 806K and 774K for baby cry, glass break and gun
shot, respectively. Therefore it is not possible to draw any direct
conclusions on the relationship between the target class and the best
performing architecture size.

3.6. An insight on GRU layer of CRNN

A case-study demonstration of the effect of GRU layers on the
CRNN outputs is given in Figure[2} The CRNN architecture used
to create this illustration consists of three convolutional layers and
one GRU layer with 32 filters/units each, followed by a single unit
classification layer. In panel (a), we can see that multiple GRU
units respond to the change of input features around 4.5 second
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Figure 2: (a): contribution of current (candidate) activation ¢,
(b): contribution of previous activation c¢—1, (c): total contribu-
tion of GRU layer to the classification activation; (d): event ac-
tivity probabilities vs. time for the first eight seconds of sample
devtest_babycry_001_1128b63726e9ed59ddc1bb944b3f22ce.wav.

mark and trigger the candidate activation, as the target event starts
to appear in the audio signal. After that, the GRU contribution is
mainly controlled by the previous activations while the target event
is still present, as shown in panels (b) and (c). Finally, the CRNN
produces almost perfect detection of onset and offset for the given
target event, as shown in panel (d).

4. CONCLUSIONS

In this paper, CRNN has been proposed for rare SED. CRNN
has provided significantly improved performance over FNNs and
CNNs for every target sound event class in DCASE 2017 challenge
dataset. It is shown that the performance can further be improved
using ensemble methods. For future work, improved ways to in-
corporate the evaluation metric into training procedure as the objec-
tive function can be considered. For instance, instead of aiming to
directly match the target output and the predicted output for each
frame, the objective function can be calculated over a window of
frames, especially for the case when the onset and offset times can
be tolerated to a certain degree.



Detection and Classification of Acoustic Scenes and Events 2017

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

5. REFERENCES

D. Stowell and D. Clayton, “Acoustic event detection for mul-
tiple overlapping similar sources,” in 2015 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2015, pp. 1-5.

E. Cakir, S. Adavanne, G. Parascandolo, K. Drossos, and
T. Virtanen, “Convolutional recurrent neural networks for bird
audio detection,” in European Signal Processing Conference
(EUSIPCO), 2017, accepted.

P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and
M. Vento, “Reliable detection of audio events in highly noisy
environments,” Pattern Recognition Letters, vol. 65, pp. 22—
28, 2015.

Y. Wang, L. Neves, and F. Metze, “Audio-based multimedia
event detection using deep recurrent neural networks,” in 2016
IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP). 1IEEE, 2016, pp. 2742-2746.

I. Choi, K. Kwon, S. H. Bae, and N. S. Kim, “DNN-based
sound event detection with exemplar-based approach for noise
reduction,” DCASE2016 Challenge, Tech. Rep., September
2016.

E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Poly-
phonic sound event detection using multi-label deep neural
networks,” in IEEE International Joint Conference on Neural
Networks (IJCNN), 2015.

T. Lidy and A. Schindler, “CQT-based convolutional neu-
ral networks for audio scene classification and domestic au-
dio tagging,” DCASE2016 Challenge, Tech. Rep., September
2016.

G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent
neural networks for polyphonic sound event detection in real
life recordings,” in 2016 IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), 2016, pp. 6440-6444.

E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and
T. Virtanen, “Convolutional recurrent neural networks for
polyphonic sound event detection,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 6,
pp- 1291-1303, 2017.

K. Cho, B. Van Merriénboer, D. Bahdanau, and Y. Bengio,
“On the properties of neural machine translation: Encoder-
decoder approaches,” Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation (SSST-8), 2014.

H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a
new over-sampling method in imbalanced data sets learning,”
Advances in intelligent computing, pp. 878-887, 2005.

L. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” in Advances in neural information processing
systems, 2014, pp. 2672-2680.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in Proceedings of The 32nd International Conference on Ma-
chine Learning, 2015, pp. 448—456.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting.” Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929-1958, 2014.

[15]

[16]

[17]

(18]

[19]

[20]

16 November 2017, Munich, Germany

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

Y. Gal, “A theoretically grounded application of dropout in
recurrent neural networks,” Advances in neural information
processing systems, 2016.

A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah,
E. Vincent, B. Raj, and T. Virtanen, “DCASE 2017 challenge
setup: Tasks, datasets and baseline system,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), November 2017, sub-
mitted.

T. Heittola. (2016) Dcase2017
tem. [Online].  Available:
DCASE2017-baseline-system

D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for poly-
phonic sound event detection,” Applied Sciences, vol. 6, no. 6,
p- 162, 2016.

baseline  sys-
github.com/TUT-ARG/


github.com/TUT-ARG/DCASE2017-baseline-system
github.com/TUT-ARG/DCASE2017-baseline-system

	 Introduction
	 method
	 System Overview
	 Acoustic Features
	 CRNN Architecture

	 evaluation
	 Acoustic Material
	 Procedure and Final Configuration
	 Baseline
	 Evaluation Metric
	 Results
	 An insight on GRU layer of CRNN

	 conclusions
	 References

