
Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

AUDIO EVENT DETECTION USING MULTIPLE-INPUT CONVOLUTIONAL NEURAL
NETWORK

Il-Young Jeong1,2, Subin Lee1,2, Yoonchang Han2, Kyogu Lee1

1 Music and Audio Research Group, Seoul National University, Korea,
2 Cochlear.ai, Seoul, Korea

{iyjeong, sblee, ychan}@cochlear.ai, kglee@snu.ac.kr

ABSTRACT

This paper describes the model and training framework from our
submission for DCASE 2017 task 3: sound event detection in real
life audio. Extending the basic convolutional neural network archi-
tecture, we use both short- and long-term audio signal simultane-
ously as input data. In the training stage, we calculated validation
errors more frequently than one epoch with adaptive thresholds. We
also used class-wise early-stopping strategy to find the best model
for each class. The proposed model showed meaningful improve-
ments in cross-validation experiments compared to the baseline sys-
tem.

Index Terms— DCASE 2017, Sound event detection, Convo-
lutional neural networks

1. INTRODUCTION

Sound event detection (SED) is a research field that aims to detect
and identify events in audio signals. In addition to playing a signif-
icant role in understanding the audio of real-life sensing, it also has
a wide range of applications such as automatic driving, surveillance
systems, health care, and humanoid robots.

Detection and classification of acoustic scenes and events
(DCASE) 2017 is a challenge for a variety of audio recognition
tasks, and task 3: sound event detection in real life audio focuses
explicitly on SED [1]. The organizer chose six event classes related
to human presence and transportation, and participants were asked
to develop algorithms that automatically detect these events from
real-world recordings. It also has various sub-objectives which have
been dealt with conventional machine learning issues such as multi-
label classification, data imbalance, insufficient data, and unreliable
annotation problems.

There was a similar task about SED in DCASE 2016, and some
participants had tried various approaches [2]. Most of the submitted
models used deep neural networks (including recurrent neural net-
works [3] and convolutional neural networks (ConvNet) [4]), Gaus-
sian mixture model [5], or random forests [6]. Regarding feature ex-
traction method, mel-spectrogram [3, 4] or mel-frequency cepstral
coefficients [5, 6] were most frequently used methods. Although
it is not easy to determine the optimal approach for DCASE 2017
from these results, the ‘deep learning’ approaches seem to have bet-
ter performance than traditional approaches.

From the past approaches, our proposed model also follows
deep learning approach, especially the ConvNet architecture. We
also designed several techniques to overcome the existing limits and
maximize detection performance by taking two type input informa-
tion (short, long-term) and optimizing the learning process.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief description of the data sets used in DCASE 2017 and
how we parsed it. Section 3 describes the proposed model archi-
tecture, and Section 4 explains how we trained the model, includ-
ing short- and long-term analysis, optimization strategy, and class-
wise early-stopping. Experimental results are presented in Section
5. Then directions for future work are discussed in Section 6, fol-
lowed by a conclusion in Section 7.

2. DATASET AND PARSING

2.1. TUT dataset

TUT sound events 2017 dataset was provided in task 3 of DCASE
2017 [7] . It consists of 24 stereo audio recordings with 3-5 min-
utes length and 44.1kHz sampling rate. Each recording has corre-
sponding annotations for six different sound event classes: breaks
squeaking, car, children, large vehicle, people speaking, and people
walking. Each annotation consists of an onset time, on offset time,
and an event class.

We parsed both audio recordings and annotations in a matrix
format. For each audio recording, it is represented as x̂ ∈ RH×N ,
where H and N denote the number of channels (2 for stereo) and
samples, respectively. On the other hand, the annotations are in the
form of t̂ = [t̂1, · · · , t̂C ]T and t̂c ∈ RN , where C denotes the
number of classes (6 for this task). Here, t̂c(n) is 1 if c-th event is
active in n-th sample, and 0 if inactive.

2.2. Target setting

Our model was designed to detect events with 1 s time resolution,
that is, when an event occurs in±0.5 s range from the present point,
the expected output will be ‘active’ even if it does not in the target
point. In order to consider this in the training process, we set the
target output tc(n) as follows:

tc(n) = max{t̂c(n− 22050), · · · , t̂c(n + 22050)} (1)

where t̂c(n) is the binary annotation of c-th event in the n-th sam-
ple. It is noted that ±22,050 sample range is about ±0.5 s time
range in the 44.1kHz sample rate.

2.3. Input data setting

To obtain the sufficient information from audio recordings, our
model takes two inputs with different time length as Fig. 1. For the
first one, which we call the short-term data, we took the samples in
the range of±88,573 samples from the present point thus the size of



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

logMel logAvgMel 

Wshort Wlong 

merge 

Wmerge 

y (n) 

Figure 1: Framework for detecting events from the red dot point us-
ing short- and long-term data. W s denote the respective concatena-
tions of computational layers, including convolution, pooling, and
fully-connected layer.

a short-term signal is Xshort ∈ R2×177147, which is approximately
4 s stereo. We set this number of samples to be 3m with integer m
to be suitable for ConvNet architecture with 3 samples pooling. An-
other input is the long-term data, which is the entire audio recording
with 3-5 minutes. As described in Section 3, each input data is first
analyzed individually then merged for the deeper analysis.

3. MODEL

3.1. Mel-spectrogram

For the short-term data, we first extracted the logarithm of mel-
spectrogram (logMel) as the first layer. 40 mel bins were extracted
for each channel from 1,024 samples with a 729 sample shift. Here,
729 = 36 shift was chosen to be suitable for ConvNet architec-
ture with 3 sample pooling. This mel-spectrogram is followed by a
logarithm operation with small offset as

x = log(x + 10−5). (2)

The output of logMel layer has the size of 80 (mel×channel)×243
(frame). Instead of preparing it for every offset samples in the train-
ing data, we computed it in real-time using kapre [8].

A similar approach was used for long-term data. A mel-
spectrogram is extracted from the whole audio file in mono, and
averaged over the time frame dimension, and taken a logarithm op-
eration as (2) (logAvgMel). The output has the size of 40×1. In-
stead of using kapre, we extracted it for every recording before
training to avoid redundant computations in every batch iterations.

3.2. ConvNet architecture

After the logMel or logAvgMel layer, we used layers that are widely
used in ConvNet-related models: convolution, pooling, dropout,
and fully-connected layer. Details are described in Table 1.

Table 1: Detailed model description. conv: convolution layer, pool:
max-pooling layer, repeat: layer repetition over frame dimension,
add: layer adding, fc: fully-connected layer. All conv and fc layer
is followed by ReLU activation, except the last fc layer, which has
sigmoid activation.

layer
(short-term)

output size
(filter×frame)

layer
long-term

output size
(filter×frame)

logMel
conv
pool
conv
pool

80×243
64×243
64×81
64×81
64×27

logAvgMel
conv
conv

repeat

40×1
64×1
64×1
64×27

↘ ↙

layer
merged

output size
(filter×frame)

add
conv
pool
conv
pool

fc
dropout

fc

64×27
64×27
64×9
64×9
64×3
64×1
64×1
6×1

We used the 1-dimensional convolution layer (conv) with 64
filters for both logMel and logAvgMel inputs. In case of logMel,
we set kernel size of 3 and stride to 1, while these parameters are
not required for logAvgMel since it has the length of 1. Rectified
linear unit (ReLU) is used for the non-linearity of conv. On the
other hand, the max-pooling layers (pool) have a pooling size of
3, and the dropout layer has a probability of 0.5. Our model also
used two fully-connected layers (fc). The first fc layer has 64 filters
with ReLU activation, and the second one has 6 filters and sigmoid
activation to indicate event activity possibilities.

Features from short- and long-term data are merged after two
convolution layers. Because of the different output sizes, we used a
repeat layer for logAvgMel which reproduces the inputs to have the
specific size. Several merging methods were tried, and we empiri-
cally found that taking a sum of two layers (add) performs the best
detection performance.

4. LEARNING FRAMEWORKS

4.1. Optimization

We used an Adam optimizer [9] with 8 mini-batch size. For every
batch generation, we randomly picked a random audio recording
and an offset, and took±88, 573 stereo samples from the offset. As
data augmentation, we shuffled the left and right channel randomly
for every batch generation. The pre-computed logAvgMel of the
selected recording is also taken. Optimization procedure is done
with keras [10].

4.2. Validation and adaptive threshold

Since our model uses sample-level batches, one epoch means that
all the sample in training data is used as the offset. In our works, we



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

Table 2: Results of 4-fold cross-validation. Each metric denotes error rate (ER) and F-score (F), respectively. ‘average’ denotes an arithmetic
mean of 4-fold results. ‘total’ denotes a micro-averaging over all classes and it might be different with an average of class-wise results due to
the different class distribution and substitutions (in case of ER). Also, it is noted that the results in CV may have some overfitting due to the
adaptive thresholding.

fold 1 2 3 4 average baseline
ER F ER F ER F ER F ER F ER F

brakes squeaking 1.00 0.0 1.00 0.0 0.97 11.8 0.93 32.4 0.98 11.1
car 0.66 63.8 0.45 80.0 0.37 79.4 0.54 69.9 0.51 73.3

children 1.00 0.0 1.00 0.0 0.99 2.7 0.25 85.7 0.81 22.1
large vehicle 0.78 56.8 0.71 65.7 0.27 85.4 0.65 61.0 0.60 67.2

people speaking 0.91 28.7 0.97 16.8 0.81 32.9 0.54 72.4 0.80 37.7
people walking 0.92 19.3 0.25 86.0 0.46 76.8 0.53 68.6 0.54 62.7

total 0.72 48.7 0.43 75.6 0.42 73.3 0.46 70.2 0.51 67.0 0.69 56.7

found that one epoch for validation might be too long. Therefore,
we validated the model after every fixed number of mini-batch itera-
tion which is much shorter than an epoch. In our works, we checked
in every 20 mini-batches learning, and the model was trained until
1,000 iterations at most.

Also, we empirically found that the default threshold of 0.5 is
not always the optimal setting. Two reasons can be given for this.
First, because the model is validated before an epoch is completed,
this portion of the data (20 mini-batches) would not have the same
class distribution as the entire data set. Second, when the class im-
balance is severe (e.g., 1% active and 99% inactive), then we found
that the predicted results tend to have more imbalanced distribution
(0% active and 100% inactive). To avoid this problem, the opti-
mal threshold was searched from 0 to 1 at 0.001 resolution for each
class in every validation stage. Although these selected thresholds
could cause the overfitting for the validation dataset, we believe that
it could be ignored if the class distribution in the validation and test
dataset is same or similar, especially when compared to the prob-
lems as mentioned above caused by not using it.

4.3. Class-wise early-stopping

Because each event class is individually detected using the sigmoid
activation in this model, it can be thought as a multi-tasked learning
that consists of a single event class detection model, but simultane-
ously learned. In this case, each class model would be trained at
different speeds, and some classes converge too much while others
do not. To solve this problem, we used the class-wise early-stopping
strategies for each class by calculating the class-specific validation
errors. In the test phase, each class event is detected using its re-
spective model.

5. EXPERIMENTS AND DCASE 2017 SUBMISSION

5.1. Experimental results

We evaluated our model following the settings and the metrics of
DCASE 2017 [11]. It first counts the number of false negatives
(FN ), false positives (FP ), and true positives (TP ) in the predic-
tion for every 1 s of data, and calculate substitutions (S), insertions
(I), and deletions (D) as follows:

S(k) = min(FN(k), FP (k)),

D(k) = max(0, FN(k)− FP (k)),

I(k) = max(0, FP (k)− FN(k)),

(3)

where k denotes the index of the 1 s segment. One of the evaluation
criteria, error rate (ER), is calculated as follows.

ER =

∑
k S(k) +

∑
k D(k) +

∑
k I(k)∑

k N(k)
, (4)

where N(k) denotes the number of active events in the k-th seg-
ment. F-score, on the other hand, is used as another criterion by
calculating as follows:

Fscore =
2
∑

k TP (k)

2
∑

k TP (k) +
∑

k FP (k) +
∑

k FN(k)
, (5)

We evaluate our model by using 4-fold cross validation provided by
organizer.

Table 2 shows the experimental results for each metric and
fold. At first, it indicates that the proposed model shows the better
error rate and F-score in all the folds and the metrics. However, de-
tailed results are different for each fold and class. We expect this
difference is caused largely due to the two reasons. First, each fold
has different class distributions, and some may are more severely
imbalance, which can lead to the lack of training data for specific
classes. In case of the difference between class, the different acous-
tic characteristics of classes also could be another reason. Some
classes might have the acoustic nature that can be easily detected or
well-suited for the presented model.

5.2. Submission for DCASE 2017

In DCASE 2017, We submitted 4 models based on above frame-
works. We empirically applied the following post-processing steps.

- For submission 1, we took the ensemble of 4 folds CV model
using majority vote. 50% voting was considered as ‘active’.

- For submission 2, we took the ensemble of 4 folds CV model
using majority vote. 50% voting was considered as ‘inactive’.

- For submission 3, we took the ensemble of 3 models (fold 2,
3, and 4) from 4 folds CV using majority vote. We worried that
the exceedingly poor performance in fold 1 might means that this
model failed learning.

-For submission 4, we also took the ensemble of 4 fold CV
model, but used weighted vote based on those validation error rate.



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

The ensemble output for c-th class in k-th segment, ȳc(k), is calcu-
lated as

ȳc(k) =

∑
f (1− CERf,c)yf,c(k)∑

f (1− CERf,c)
(6)

where CERf,c and yf,c(k) denote the class-wise ER of c-th class
in f -th fold.

According to DCASE 2017 results [12], above submissions
scored ER of 0.9260, 0.8673, 0.8080, and 0.8985, respectively,
and F-score of 42.0%, 27.9%, 40.8%, and 43.6%, respectively. In
particular, submission 3 ranked third in ER. However, All the sub-
missions showed relatively low F-score, and it is needed to be im-
proved.

6. FUTURE WORK

Although the proposed model achieved meaningful results com-
pared to the baseline system, there still exists room for improve-
ment in future works. First, although we have tried various ap-
proaches to handle the class imbalance problems, such as class
weights, these were not included in the final submission models
except adaptive thresholding because they could not make any im-
provement. We have a plan to apply other techniques, including data
sampling methods [13, 14]. Also, in our experiments, we found that
the training and validation loss severely fluctuates over mini-batch
iteration. We conjecture that validating model more frequently than
one epoch might be one of the reasons, but we are still tried to avoid
or reduce this problem. Finally, we have an interest in finding the
proper preprocessing method for deep learning of audio. Although
log mel-spectrogram what we used is widely used in other studies,
it lost a substantial amount of information, and a better approach is
still required. We expect that proper deep learning model is capable
of replacing these preprocessing step and conducting an end-to-end
model which detects events from raw waveform [15].

7. CONCLUSION

This paper has described the model for sound event detection sub-
mitted to DCASE 2017: task 3. We presented a convolutional neu-
ral networks architecture using two input data, which are short-term
and long-term data. Several optimization strategies were also pre-
sented, including frequent validation with adaptive thresholds and
the class-wise early-stopping. The proposed framework showed
meaningful improvements compared to the baseline system.

8. REFERENCES

[1] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah,
E. Vincent, B. Raj, and T. Virtanen, “Dcase 2017 challenge
setup: tasks, datasets and baseline system,” in Proc. the De-
tection and Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017), 2017.

[2] http://www.cs.tut.fi/sgn/arg/dcase2016/.

[3] S. Adavanne, G. Parascandolo, P. Pertila, T. Heittola, and
T. Virtanen, “Sound event detection in multichannel audio us-
ing spatial and harmonic features,” in Proc. the Detection and
Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), September 2016, pp. 6–10.

[4] A. Gorin, N. Makhazhanov, and N. Shmyrev, “DCASE 2016
sound event detection system based on convolutional neu-
ral network,” DCASE2016 Challenge, Tech. Rep., September
2016.

[5] T. Heittola, A. Mesaros, and T. Virtanen, “DCASE2016 base-
line system,” DCASE2016 Challenge, Tech. Rep., September
2016.

[6] B. Elizalde, A. Kumar, A. Shah, R. Badlani, E. Vincent,
B. Raj, and I. Lane, “Experiments on the DCASE challenge
2016: Acoustic scene classification and sound event detection
in real life recording,” in Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), September 2016, pp. 20–24.

[7] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection,”
in 24th European Signal Processing Conference 2016 (EU-
SIPCO 2016), Budapest, Hungary, 2016.

[8] K. Choi, D. Joo, and J. Kim, “Kapre: On-gpu audio pre-
processing layers for a quick implementation of deep neural
network models with keras,” in Machine Learning for Music
Discovery Workshop at 34th International Conference on Ma-
chine Learning. ICML, 2017.

[9] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[10] F. Chollet et al., “Keras,” https://github.com/fchollet/keras,
2015.

[11] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for poly-
phonic sound event detection,” Applied Sciences, vol. 6, no. 6,
p. 162, 2016.

[12] http://www.cs.tut.fi/sgn/arg/dcase2017/.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling tech-
nique,” Journal of artificial intelligence research, vol. 16, pp.
321–357, 2002.

[14] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling ap-
proaches for imbalanced data distributions,” Expert Systems
with Applications, vol. 36, no. 3, pp. 5718–5727, 2009.

[15] J. Lee, J. Park, K. L. Kim, and J. Nam, “Sample-level deep
convolutional neural networks for music auto-tagging using
raw waveforms,” arXiv preprint arXiv:1703.01789, 2017.


