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ABSTRACT

In this paper we present a Deep Neural Network architecture for
the task of acoustic scene classification which harnesses informa-
tion from increasing temporal resolutions of Mel-Spectrogram seg-
ments. This architecture is composed of separated parallel Convo-
lutional Neural Networks which learn spectral and temporal rep-
resentations for each input resolution. The resolutions are chosen
to cover fine-grained characteristics of a scene’s spectral texture
as well as its distribution of acoustic events. The proposed model
shows a 3.56% absolute improvement of the best performing single
resolution model and 12.49% of the DCASE 2017 Acoustic Scenes
Classification task baseline [1].

Index Terms— Deep Learning, Convolutional Neural Net-
works, Acoustic Scene Classification, Audio Analysis

1. INTRODUCTION

Convolutional Neural Networks (CNN) [2] have become a popular
choice in computer vision due to their ability to capture nonlinear
spatial relationships which is in favor of tasks such as visual ob-
ject recognition [3]. Their success has fueled interest also in audio-
based tasks such as speech recognition and music information re-
trieval. An interesting sub-task in the audio domain is the detection
and classification of acoustic sound events and scenes, such as the
recognition of urban city sounds, vehicles, or life forms, such as
birds [4]. The IEEE AASP Challenge DCASE is a benchmarking
challenge for the “Detection and Classification of Acoustic Scenes
and Events”. Acoustic Scene Classification (ASC) in urban envi-
ronments (task 1) is one of four tasks of the 2016 and 2017 com-
petition. The goal of this task is to classify test recordings into one
of predefined classes that characterizes the environment in which it
was recorded, for example “metro station”, “beach”, “bus”, etc. [1].

The presented approach attempts to circumvent various limi-
tations of Convolutional Neural Networks (CNN) concerning au-
dio classification tasks. The tasks performed by a CNN are more
related to the visual computing domain. A common approach is
to use Short-Term Fourier Transform (STFT) to retrieve a Spec-
trogram representation which is in the following interpreted as a
gray-scale image. Commonly a Mel-Transform is applied to scale
the Spectrogram to a desired input size. In previous work we have
introduced a CNN architecture to learn timbral and temporal rep-
resentations at once. This architecture takes a Mel-Spectrogram as
input and reduces this information in two parallel CNN stacks to-
wards the spectral and the temporal dimension. The combined rep-
resentations are input to a fully connected layer to learn the concept

relevant dependencies. The challenge is how to choose the length
of the input analysis window. Acoustic events can be single sounds
or compositions of multiple sounds. Acoustic scenes could be de-
scribed by the presence of a single significant acoustic event such as
ship horns for harbors or by combinations of different events. The
temporal pattern of such combinations varies distinctively across
and within the acoustic scenes (see Figure 1 for examples of acous-
tic scenes). Choosing the wrong size of the analysis window can
either prevent from having sufficient timbral resolution or to fail to
recognize acoustic events with longer patterns.

Thus, we propose an architecture that trains on multiple tempo-
ral resolutions to harness relationships between spectral sound char-
acteristics of an acoustic scene, and its patterns of acoustic events.
This would facilitate to learn more precise representations on a high
temporal scale to discriminate timbral differences such as diesel en-
gines from trucks and petrol based engines from private cars. On the
other hand, low level temporal resolutions with ranges from several
seconds can optimize on different patterns of acoustic events such
a speech, steps or passing cars. Finally, the representations of the
different temporal resolutions, learned by the parallel CNN stacks,
are combined to form an input for a fully connected layer which
learns the relationships between them to predict the acoustic scenes
annotated in the dataset.

In Section 2 we will give a brief overview of related work.
In Section 3 and 4 our method and the applied data augmentation
methods are described in detail. Section 5 describes the evalua-
tion setup and results while results are presented and discussed in
Section 6. Finally, Section 7 summarizes the paper and provides
conclusions.

2. RELATED WORK

The presented approach is based on our DCASE 2016 contribu-
tion [6] and the modified deeper parallel architecture presented in
[7]. Approaches to apply CNNs and Neural Network (NN) archi-
tectures to audio analysis tasks were evaluated in [8]. The authors
conclude that DNNs are not yet outperforming crafted feature-based
approaches and that best performing results can be achieved through
hybrid combinations. Also the leading contributions to the DCASE
2016 ASC task were not based on DNNs [9, 10, 11] A similar data
augmentation method of mixing audio files of the same class to gen-
erate new instances was applied in [12] and similar perturbations
and noise induction was reported in [13]. Approaches to ASC us-
ing CNN based models were reported in [14, 15]. Combinations
of CNNs with Recurrent Neural Networks (RNN) [16] have also
shown promising results.
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Figure 1: Example Mel-Spectrograms to visualize variances in length and shape of different acoustic events. a) dropping coins into the
cash-box, b) beating coffee grounds out of the strainer, c) Doppler effect with Lloyd’s mirror effect [5] of a passing car, d) chirping bird, e)
opening and closing of cupboards and drawers in the kitchen, f) arriving subway with pneumatic exhaust.

3. METHOD

The presented approach analyses multiple temporal resolutions si-
multaneously. The design of this architecture is based on the hy-
pothesis that acoustic scenes are composed of the spectral texture
or timbre of a scene such as the low-frequent humming of refrigera-
tion units in supermarkets as well as a sequence of acoustic events.
These events can be unique for certain acoustic scenes such as the
sound of breaking waves at the beach, but usually the characteristics
of a scene is described by mixtures of multiple events or sounds.
Spectral texture or timbre analysis requires high temporal resolu-
tions. To distinguish the trembling fluctuations of a truck’s diesel
engine from a private car an analysis window of several millisec-
onds is required. Acoustic events, as exemplified in Figure 1, hap-
pen on a much broader temporal scale. The pattern of beating the
coffee grounds out of the strainer of an espresso machine in a caffee
(see Figure 1 b) requires an analysis window of 0.5 to 1 seconds. Up
to 5 seconds are required for the very significant dropping sound of a
decelerating Metro engine with the pneumatic exhaust of the breaks
at full halt (see Figure 1 f).

Figure 2 visualizes different spectral resolutions at a fixed start-
offset from audio content recorded in a residential area. Figure 2
a) visualizes the low-frequent urban background hum at a very high
temporal resolution. At this level a CNN can learn a good tim-
bre representation for acoustic scenes, but it is not able to recog-
nize acoustic events that are longer than 476 milliseconds. Patterns
such as speech (see Figure 2 c) or combinations of patterns such
as people talking while a car is passing (see Figure 2 e) require
much longer analysis windows, up to several seconds. The prob-
lem with single-resolution CNNs is, that a decision has to be made
concerning the length and precision of the analysis window. A high
temporal resolution prevents from recognizing long events while a
low resolution is not able to effectively describe timbre. Increasing
the size of the input segment to widen the analysis window would
also increase the size of the model, its number of trainable param-
eters and the number of required training instances to avoid over-
fitting. If pooling-layers are extensively used to reduce the size of
the model, the advantage of the high temporal resolution gets lost
in these data-reduction steps.

Thus, we propose to use multiple inputs at different temporal
resolutions to have separate CNN models learn acoustic scene rep-
resentations at different scales which are finally combined to learn
the categorical concepts of the acoustic scene classification dataset.

3.1. Deep Neural Network Architecture

The presented architecture consists of identical but not shared Con-
volutional Neural Network (CNN) stacks - one for each temporal
resolution. These stacks are based on the parallel architectures ini-
tially described in [17] and further developed in [6, 7, 4]. The fully
connected output layers of each parallel CNN stack, which is con-
sidered to contain the learned representation for the corresponding
temporal resolution, are combined to the multi-resolution model.

The Parallel Architecture: This architecture uses a parallel ar-
rangement of CNN layers with rectangular shaped filters and
Max-Pooling windows to capture spectral and temporal rela-
tionships at once [17]. The parallel CNN stacks use the same
input - a log-amplitude transformed Mel-Spectrogram with 80
Mel-bands spectral and 80 STFT frames temporal resolution.
The variant used in this paper (see Figure 3b) is based on the
deep architecture presented in [7]. The first level of the par-
allel layers are similar to the original approach [6]. They use
filter kernel sizes of 10×23 and 21×10 to capture frequency
and temporal relationships. To retain these characteristics the
sizes of the convolutional filter kernels as well as the feature
maps are sub-sequentially divided in halves by the second and
third layers. The filter and Max Pooling sizes of the fourth layer
are slightly adapted to have the same rectangular shapes with
one part being rotated by 90◦. Thus, each parallel layer sub-
sequently reduces the input shape to 2 ×10 dimensions - one
layer reduces the spectral while preserving the temporal infor-
mation, the other performs the same reduction on the temporal
axis. The final equal dimensions of the final feature maps of the
parallel model paths balances their influences on the following
fully connected layer with 200 units.

Multi-Temporal Resolutions CNN: The proposed architecture
instantiates one parallel architecture for each temporal resolu-
tion (see Figure 3b. Their fully connected output layers are con-
catenated. To learn the dependencies between the sequences of
spectral and temporal representations of the different temporal
resolutions an intermediate fully connected layer with 512 units
is added before the Softmax output layer.

Dropping out Resolution Layers: To support the final fully con-
nected layer in learning relations between the different reso-
lutions, a layer that has been added that drops out entire res-
olutions of the concatenated intermediate layer of the multi-
resolution architecture.
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Figure 2: Input Segments for the Convolutional Neural Networks with 80 Mels spectral and five different temporal resolutions with fixed
start-offset. a) spectral texture of residential area background noise, b) person saying a word (vertical wave-line), c) person talking, tweet of
a bird (horizontal arc), d) person talking, bird tweeting, e) person talking, bird tweeting, car passing (light cloud to the right)

4. DATA AUGMENTATION

The most challenging characteristics of the provided dataset is its
low variance. Table 1 depicts that for each class audio content of
3120 seconds length is provided. Nevertheless, this content orig-
inates from only 13 to 18 different locations per class. To create
more data instances these recordings have been split into 10 sec-
onds long audio files, but this does not introduce more variance due
to very high self-similarity within a location. This low variance
leads complex neural networks with a large number of trainable pa-
rameters to over-fit on the training data. Further, the limitation of
10 seconds per file prevents from using larger analysis windows. To
circumvent these shortcomings data augmentation using the follow-
ing methods is applied:

Split-Shuffle-Remix of audio files: To create additional audio
content by increasing the length of an audio file its content
is segmented by non-silent intervals. To create approximately
10 segments the Decibel-threshold is iteratively increased until
the desired quantity is reached. These segments are duplicated
to retrieve four identical copies which corresponds to 40 sec-
onds of audio. All segments are then randomly reordered and
remixed into a final combined audio file.

Remixing Places: To introduce more variance in the provided
data, additional training examples are created by mixing files of
the same class. Based on the assumption that classes are com-
posed of a certain spectral texture and a set of acoustic events,
mixing files of the same class would generate new recordings of
this class. For each possible pairwise combination of locations
within a class, a random file for each location is selected. The
recordings are mixed by averaging both signals.

Pitch-Shifting: The pitch of the audio signal is increased or de-
creased within a range of 10% of its original frequency while
keeping its tempo the same. The 10% range has been subjec-
tively assessed. Larger perturbations sounded unnaturally.

Time-Stretching: The audio signal is speed up or slowed down
randomly within a range of 10% at maximum of the original
tempo while keeping its pitch unchanged.

Noise Layers: A data-independent augmentation method to in-
crease the model’s robustness. The input data is corrupted
by adding Gaussian noise with a probability of σ = 0.1 is
to the Mel-Spectrograms. The probability σ has been empiri-
cally evaluated in preceding experiments using different single-
resolutions models. From the tested values [0.05, 0.1, 0.2, 0.3]
a σ of 0.1 improved the model’s accuracies most.
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Figure 3: The Multi-Resolution Model (a) which consists of one
Parallel CNN Architecture (b) per temporal resolution.

5. EVALUATION

The presented approach was evaluated on the development dataset
of the TUT Acoustic Scenes 2017 dataset [1]. The dataset consists
of 15 classes representing typical urban and rural acoustic scenes
(see Table 1). 4-fold cross-validation was applied using grouped
stratification which preserved the class distribution of the original
ground-truth assignment in the train/test splits as well as ensured
that files of the same location are not split across them. The perfor-
mance was measured in classification accuracy on a per-instance-
level (raw) for every extracted Mel-Spectrogram as well as on a per-
file-level (grouped) by calculating the average Softmax response
for all Mel-Spectrograms of a file. For each audio file 10 log-
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Table 1: Per class dataset Overview. Number of different locations,
complete length as well as min/max/mean length of audio content.

Label num diff Audio length (in seconds)
locations sum min max mean

beach 17 3120 120 210 183.5
bus 18 3120 60 300 173.3
cafe/restaurant 16 3120 120 300 195.0
car 17 3120 90 270 183.5
city center 15 3120 150 270 208.0
forest path 18 3120 60 300 173.3
grocery store 17 3120 120 270 183.5
home 16 3120 90 300 195.0
library 16 3120 150 240 195.0
metro station 17 3120 90 300 183.5
office 13 3120 150 300 240.0
park 17 3120 120 210 183.5
residential area 17 3120 120 240 183.5
train 17 3120 90 270 183.5
tram 17 3120 60 300 183.5

amplitude scaled Mel-Spectrograms with 80 Mels times 80 frames
are extracted from the normalized input signal using random off-
sets and increasing FFT window sizes of 512, 1024, 2048, 4096,
8192 samples with 50% overlap. To augment the data, additional
10 random input segments were extracted for time-stretched, pitch-
shifted place-wise remixed audio content. Split-Shuffle-Remix aug-
mentation preceded all feature extraction processes. The neural net-
works were trained using Nadam optimization [18] with categorical
crossentropy loss at 10−5 learning rate and a batch-size of 32. The
learning rate was reduced by 10% if the validation loss did not im-
prove over 3 epochs maintaining a minimum rate of 5 ∗ 10−6.

The evaluation is divided into single- and multi-resolution ex-
periments. First, for each of the combined model’s resolutions a
separate parallel CNN model, and second, the full multi-resolution
model is evaluated. Both experiments are performed using un-
augmented (raw) and augmented input data.

6. RESULTS AND DISCUSSION

As shown in Table 2 and Figure 4 the proposed multi-resolution
model clearly outperforms the best performing single-resolution
models by 3.56%. Especially the classes train, metro station, res-
idential area and cafe/resaturant indicate that the model harnesses
dependencies between the temporal resolutions. Although an im-
provement can already be observed on un-augmented (raw) data,
the high complexity of the model especially gains from the added
variance of augmented data. An interesting observation though is
that the augmentation had no or a slightly degrading effect on the
classes car, grocery store and city center, which seem to be unaf-
fected or distorted by timbral and temporal perturbations or by mu-
tual remixing. Grouping and averaging the predictions for a file of
all single-resolution models (see ’grouped single’ in Table 2) does
not increase the performance of these models, nor is it comparable
to the multi-resolution model. It was further observed that lower
temporal resolutions perform better than higher. This could indi-
cate that the higher contrast of peaking spikes in the spectrograms
makes it easier for algorithms to learn better and more discrimina-
tive representations than from the noise-like pattern of higher tem-
poral resolutions. As already reported in preceding studies [6, 19, 7]
the grouped accuracy outperforms instance based (raw) prediction.
Averaging over multiple predicted segments of a test file balances
outliers in the classification results. The custom dropout which
dropped the output of two random resolution CNN stacks showed
little effect on the general performance of a model. Conventional

Table 2: Experimental results (classification accuracy with standard
deviation over cross-validation folds). Single-resolution model re-
sults provided on top, multi-resolution models at the bottom.

fft instance grouped instance grouped
win size raw raw augmented augmented

512 64.14 (2.84) 70.32 (2.96) 69.06 (4.33) 76.63 (4.44)
1024 66.32 (2.58) 71.27 (3.06) 71.70 (5.46) 77.06 (5.46)
2048 66.83 (1.52) 70.23 (1.99) 76.24 (2.53) 80.46 (3.30)
4096 69.50 (2.83) 71.92 (3.23) 79.20 (3.03) 81.66 (3.29)
8192 69.66 (2.58) 71.47 (2.95) 82.26 (2.40) 83.73 (2.63)
grouped single 73.12 83.19
multi-res 72.23 (4.15) 74.30 (4.81) 85.22 (2.11) 87.29 (2.02)
multi-res do 69.39 (2.77) 72.05 (3.26) 82.51 (2.37) 86.04 (3.03)
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Figure 4: Results per class and FFT window size with ascending
temporal resolutions. Multi-resolution results at last. Grayed bars
represent un-augmented data, red bars augmented.

Dropout with a probability of σ = 0.25 seemed sufficient.

7. CONCLUSIONS AND FUTURE WORK

The presented study introduced a Convolutional Neural Network
(CNN) architecture which harnesses multiple temporal resolutions
to learn dependencies between timbral properties of an acoustic
scene as well as its temporal pattern of acoustic events. The experi-
mental results showed that the proposed multi-resolution model out-
performs the all single-resolution and combined models by at least
3.56%. Future work woul concentrate on improved data augmen-
tation models, including evaluations on which augmentation meth-
ods have an improving/degrading effect on the classes (e.g. grocery
store) and which methods can be applied to make the lower per-
forming classes more discriminative.
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