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ABSTRACT

This paper describes our submission to the first Freesound general-
purpose audio tagging challenge carried out within the DCASE
2018 challenge. Our proposal is based on a fully convolutional
neural network that predicts one out of 41 possible audio class la-
bels when given an audio spectrogram excerpt as an input. What
makes this classification dataset and the task in general special, is
the fact that only 3,700 of the 9,500 provided training examples are
delivered with manually verified ground truth labels. The remain-
ing non-verified observations are expected to contain a substantial
amount of label noise (up to 30-35% in the “worst” categories). We
propose to address this issue by a simple, iterative self-verification
process, which gradually shifts unverified labels into the verified,
trusted training set. The decision criterion for self-verifying a train-
ing example is the prediction consensus of a previous snapshot of
the network on multiple short sliding window excerpts of the train-
ing example at hand. On the unseen test data, an ensemble of
three networks trained with this self-verification approach achieves
a mean average precision (MAP@3) of 0.951. This is the second
best out of 558 submissions to the corresponding Kaggle challenge.

Index Terms— Audio-tagging, Fully Convolutional Neural
Networks, Noisy Labels, Label Self-Verification

1. INTRODUCTION

This short paper describes our approach1 to the first “Freesound
General-purpose Audio Tagging Challenge” which is carried out
as Task 2 of the DCASE 2018 Challenge [1]. The central motiva-
tion for this challenge is to foster research towards more general
machine listening systems capable of recognizing and discerning a
wide range of acoustic events and audio scenes.

In particular, we aim at building an audio tagging system which
assigns one out of 41 potential candidate labels to an unknown au-
dio recording of arbitrary length. The labels comprise sound events
such as music instruments, human sounds, animals, or domestic
sounds [1]. What makes working with this data challenging is
twofold: Firstly, the data set is collected from Freesound2, which is
a repository for user-generated audio recordings capturing diverse
content with highly varying signal lengths recorded under diverse
conditions [2, 3]. Secondly, the development (or training) dataset is
delivered only partly with manually annotated ground truth labels.
For the remaining recordings the labels are automatically generated

1Code: https://github.com/CPJKU/dcase_task2
2https://freesound.org/

and comprise up to 30-35% label noise in the “worst” categories.
In the remainder of this paper, we refer to the manually annotated
training observations as verified and to the additionally automati-
cally annotated observations as unverified.

The central idea of our approach is to address the problem
of noisy labels by training a fully convolutional audio classifica-
tion network, which is iteratively fine-tuned by self-verifying the
parts of the training observations provided without manually veri-
fied ground truth.

Technically, the task at hand is similar to other tasks (of ear-
lier versions) of the DCASE challenge, which focus on detection
or classification of audio scenes [4]. Therefore also our network
architectures are inspired by earlier works addressing these prob-
lems [5]. Naturally, a large number of similar architectures and
neural networks have proven to be powerful tools in this setting
[6, 7, 8, 9, 10, 11]. There is also a large amount of prior work
on training neural networks in the presence of label noise (see e.g.
[12, 13, 14]). Due to the specifics of the current task (the labels of
a large fraction of the data have verified manually and thus can be
trusted), we opt for a straight forward iterative self-verification strat-
egy. More concretely, to verify possibly noisy labels, our approach
compares the labels of unverified examples with the predictions of
a neural network, i.e. this can be interpreted as a version of “super-
vised” pseudo labeling [15]. A related approach addressing noisy
labels by active label correction has been recently proposed in [16].

2. AUDIO DATA PREPROCESSING

Before we present the data to our networks, we apply several au-
dio preprocessing steps including silence clipping and spectrogram
computation.

The first step in our pipeline is normalizing the audio signal to
a dB-level of −0.1. Next, we clip potential silence in the beginning
and the end of the normalized audio using SoX3. This step is impor-
tant as we later on optimize our networks on short sliding windows
of the original files and want to avoid presenting training observa-
tions containing only silence along with the original label of the
file4. Figure 1 shows an audio example of class Knock where this
preprocessing step has a severe impact, reducing the effective length
of the spectrogram from 435 to only 186 frames. Note that the part
of the spectrogram covering actual audio content is preserved.

3http://sox.sourceforge.net/
4For further details on how the audio signals are preprocessed we refer

to our write-up: https://cpjku.github.io/dcase_task2/
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Figure 1: Log-Spectrogram (Version-2) of audio signal of class
Knock before and after silence clipping.

0 1000 2000 3000 4000 5000
Spectrogram Length

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Fr
ac

tio
n 

of
 S

am
pl

es

Figure 2: Distribution of spectrogram lengths computed with spec-
trogram version-1.

Before computing the spectrograms we resample the audio sig-
nals to 32,000 Hz, and compute a Short Time Fourier Transform
(STFT) using 1024-sample hann windows. To try to capture dif-
ferent aspects of the audio, we extract two different spectrogram
versions for our final submission:

Version-1 uses an STFT hop-size of 192 samples. Given this
spectrogram, we apply a perceptual weighting to the individual fre-
quency bands of the power spectrogram [17]5. Finally, we apply a
mel-scaled filterbank yielding 128 frequency bins per data point.

Version-2 uses an STFT hop-size of 128 samples and does not
apply perceptual weighting but takes the logarithm of the power
spectrogram instead. Finally it is post-processed with a logarithmic
filter-bank again resulting in 128 frequency bins [18].

An additional characteristic of the data at hand is the varying
length of the recordings. Figure 2 shows the distribution of spec-
trogram lengths for spectrogram version-1. As convolutional neu-
ral networks – which are the central component of our method –
in general have a fixed field of view (input dimensions), it is de-
sirable to work with audio excerpts consisting of the same number
of frames. Additionally, to design convolution networks including
max-pooling layers with a certain depth, we need to exceed a min-
imum input dimensionality6. To that end, we fix a target length of
3000 frames and simply repeat a given excerpt in case it is too short
and clip it at 3000 frames in case it is too long. The 3000 frame
threshold is chosen intuitively as the spectrogram length distribu-
tion in Figure 2 has a long tail with few observations.

5librosa.core.perceptual_weighting
6After each max-pooling layer the dimensionality of the input / feature

maps gets halved. This of course restricts the maximum depth of a network.

Input 1× 384× 128
5× 5 Conv(pad-2, stride-2)-64-BN-ReLU
3× 3 Conv(pad-1, stride-1)-64-BN-ReLU

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-128-BN-ReLU
3× 3 Conv(pad-1, stride-1)-128-BN-ReLU

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-256-BN-ReLU

Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-256-BN-ReLU

Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-384-BN-ReLU

Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-384-BN-ReLU

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-512-BN-ReLU
3× 3 Conv(pad-1, stride-1)-512-BN-ReLU

1× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-512-BN-ReLU
3× 3 Conv(pad-1, stride-1)-512-BN-ReLU

1× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-0, stride-1)-512-BN-ReLU

Drop-Out(0.5)
1× 1 Conv(pad-0, stride-1)-512-BN-ReLU

Drop-Out(0.5)
1× 1 Conv(pad-0, stride-1)-41-BN

Global-Average-Pooling
41-way Soft-Max

Table 1: Network architecture. BN: Batch Normalization, ReLU:
Rectified Linear Unit.

3. NETWORK AND TRAINING DETAILS

In this section, we describe the neural network architectures as well
as the optimization strategies used for training our audio scene clas-
sification networks.

3.1. Network Architecture

Our basic network architecture is a fully convolutional neural net-
work as depicted in Table 1. In total we use three slightly modi-
fied versions of this architecture for our submission, but the gen-
eral design principles remain the same. The feature learning part
of our model follows a VGG style network [19], and the classifi-
cation part of the network is designed as a global average pooling
layer [20] over 41 feature maps (one for each class) followed by
a softmax activation. In our experiments, global average pooling
over per-class feature maps consistently outperforms networks us-
ing fully connected layers as a classification output. As an activation
function within the network we use Rectified Linear Units (ReLUs)
in combination with batch normalization [21]. Overall, this model
comprises 14,865,124 trainable parameters.

3.2. General Training Procedure

At training time, we show the network randomly selected 384 frame
excerpts of the full spectrograms, while presenting the whole 3,000
frame spectrograms during testing. This is technically possible as
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Figure 3: Stratified 4-fold cross-validation setup. After splitting
into verified and unverified data we create eight stratified splits, each
preserving the original label distribution. As a last step we assemble
the eight sub-splits into four distinct folds.

our network is fully convolutional and can therefore process audio
excerpts of varying length. Intuitively, presenting shorter excerpts
for training should mitigate the effect of over-fitting to the individ-
ual training examples, as we end up with a much larger amount of
shorter sub-excerpts. To further prevent over-fitting, we addition-
ally apply mixup-data augmentation [22] with an alpha of 0.3.

As optimizer we use the ADAM update rule [23] with an ini-
tial learning rate of 0.001 and a mini-batch size of 100 samples for
training the initial version of our models. Each model is trained for
500 epochs, where we linearly decay the learning rate to zero start-
ing from epoch 100. When fine tuning our models with iterative
self-verification (see Section 4), we use a slightly modified training
setup as described below.

4. 4-FOLD ITERATIVE SELF-VERIFICATION

This section describes our iterative self-verification loop to address
the noisy labels in the development dataset. The central idea is to
gradually shift unverified labels into the verified, trusted training set
for fine-tuning the models.

4.1. 4-Fold Cross-Validation Setup

One crucial component of our self-verification approach is the way
we prepare our training-validation-setup. To enable the proposed
step-wise verification approach, we have to design our folds in a
way that parts of the data (which we would like to verify) are never
presented to the verification model for training. Otherwise, the neu-
ral network would learn the entire training set by heart, even in the
presence of noisy labels [24], and its prediction become worthless
for the verification strategy. Figure 3 provides an overview on how
we prepare our split. First, we separate the development dataset into
verified and unverified observations. Second, we split each of the
two subsets into four stratified sub-folds, meaning that the label dis-
tribution in the sub-folds remains the same as in the original dataset.
We consider this an important detail as the challenge organizers
state on the official web page that the unseen test data exhibits a
similar label distribution. In fact, for selecting our final submission
we did not rely on the public Kaggle-Leaderboard but on the aver-
age performance on our local 4-fold cross-validation setup. Each of
our local validation folds contains approximately 900 verified files
which is substantially more than the 300 files (19% of official test
data) considered for the public leaderboard. Although preparing
this validation setup is straight forward, it is a crucial step as it is
the basis for our self-verification pipeline described below.

Figure 4: Iterative self-verification loop and model fine-tuning.

4.2. Iterative Self-Verification Loop

Figure 4 provides an overview of our iterative self-verification loop.
Step one of this procedure is to train an initial model utilizing all
the training data of a fold also including the unverified samples. We
train one model for each fold as described in Section 3.2 and keep
the best parametrization according to its validation loss on the veri-
fied validation data excluded from training. Note that the unverified
data is not considered for model selection. This is also the main rea-
son why we provide separate stratified splits for verified and unveri-
fied observations as it should provide us with an as reliable estimate
of the real model performance as possible.

Once the initial model is trained we use it to predict the labels
of its respective unseen validation examples. However, in contrast
to the model selection we now only predict on the unverified ob-
servations. In particular, we draw K random 384 frame excerpts
of the original 3000 frame spectrograms of the audio clip to ver-
ify. We then compute the average of the individual posterior class
distributions pi(y|x) of these K excerpts:

p̄(y|x) =
1

K

K∑
i=1

pi(y|x) (1)

with K = 25, x ∈ R384×128 and y ∈ {0, ..., 40}. We then proceed
by considering unverified examples as correctly annotated if:

1. The provided unverified label yu matches the label
argmax

ya
p̄(y|x) predicted by the average of the individual

posterior distributions.

2. The average of the target class posteriors exceeds 0.95.

3. A maximum count of 40 self-verified examples per class is
not yet reached.

The intuition behind this approach is that especially for the unveri-
fied training examples multiple different classes might be present in
a single audio recording. Still it is annotated with a single and hence
unreliable label. When predicting on multiple random sub-excerpts
of the recording this should be revealed by exhibiting a low aver-
age posterior probability p̄(y|x) for the provided target class label.
The last condition for self-verification is introduced as some classes
have very few examples and we want to avoid shifting the original
label distribution of the dataset. As our procedure is based on four
distinct cross-validation folds each unverified example is considered
for verification once per iteration.

The final stage of this self-verification loop is to fine-tune the
four initial fold models, this time using the officially provided ver-
ified observations and the ones passing the self-verification condi-
tions in the previous stage. For the fine-tuning stage we train for
30 epochs with an initial learning rate of 0.0002, which is again
decayed to zero starting after five epochs. We do not use mixup
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(a) Initial model trained on entire dataset.
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(b) Models after self-verification fine-tuning.

Figure 5: Comparison of model performance of network trained on
(a) all provided data including noisy labels and (b) all data which
passed the proposed self-verification at the respective iteration. We
report mean and standard deviation (shaded area) of the classifica-
tion accuracy on training (tr) and validation (va) set averaged across
our four development folds. For the present case self-verification
iteration 7 yields the best model (fine-tuned for 7 × 30 epochs).

data augmentation in this stage anymore. After fine-tuning we go
back to step two and repeat the whole procedure in a loop for ten
times. Once the ten iterations are completed, we select the model
parameterization of the iteration showing the lowest average vali-
dation loss on the officially verified validation data. Note that we
do not reset the network to the initial parameterization after each
fine-tuning iteration but continue training the same model.

5. EXPERIMENTAL RESULTS

In this section we report our empirical results on both, our local val-
idation setup as well as the public and private Kaggle-Leaderboard.
As evaluation measures we consider the Mean Average Precision
@ 3 (MAP@3), which is the score officially used for the challenge,
as well as classification accuracy and F-Score when presenting the
performance on individual classes.

Figure 5a shows training and validation accuracy on our local
4-fold setup of the model described in Table 1 when training on
the entire dataset including unverified labels. This corresponds to
the first stage of the self-verification procedure in Figure 4. We re-
port the mean and standard deviation of the network across the four
distinct folds where the best average accuracy on the validation set
after stage one is 93.87%. In Figure 5b we show the performance
of the same model after the first and seventh fine-tuning iteration.

Public Private Public & Private
MAP@3 0.9563 0.9518 0.9526
Accuracy 93.688 92.610 92.812

Table 2: Audio tagging performance on the public, private, and
public & private test set (Kaggle-Leaderboard).
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Figure 6: F-score of final submission on individual classes.

Already after the first self-verification iteration, we observe a per-
formance improvement to 95.56%. Finally, the model reaches its
best performance in iteration seven with an average verified valida-
tion set performance of 96.01%.

Before preparing our submission for the challenge, we trained
three similar networks to the one in Table 1 (two on spectrogram
version-1 and one on spectrogram version-2) and averaged their
predictions. When evaluating this submission on the official test
data set we achieve the second best scoring submission in the final
private Kaggle-Leaderboard with a MAP@3 of 0.9518. For easier
comparability with future research on this dataset, we also report
detailed results on the different subsets of the test data in Table 2.

To provide an intuition on how well the approach performs on
individual classes, we report the F-score for all 41 classes in Fig-
ure 6. We observe that the model achieves an F-score above 0.8 for
all classes except for Squeak, Fireworks, and Glockenspiel. Many
of the classes are even recognized with a perfect score of 1.0. Con-
sidering the noisy labels and that there are 41 different classes to
distinguish we take this as a remarkable result.

6. CONCLUSION

In this workshop paper, we described our submission to the first
Freesound general-purpose audio tagging challenge carried out
with DCASE 2018. Our proposed approach is an iterative self-
verification loop built on top of a fully convolutional neural net-
work. After an initial training stage using all the data, we iteratively
fine-tune our networks using label self-verification. The central idea
of our proposal is to add unverified examples step-by-step to the
training set based on the prediction consensus of our networks with
the suggested, noisy labels. For a single model, this approach im-
proves the classification accuracy from 93.87% to 96.01% on the
local validation set. When training an ensemble of three similar net-
works in this fashion, we are able to achieve a MAP@3 of 0.9518
(92.610% accuracy) on the final private Kaggle-Leaderboard. Over-
all this yields the second best scoring out of 558 submissions.
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