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ABSTRACT

In this paper, we present a gated convolutional recurrent neural net-
work based approach to solve task 4, large-scale weakly labelled
semi-supervised sound event detection in domestic environments,
of the DCASE 2018 challenge. Gated linear units and a tempo-
ral attention layer are used to predict the onset and offset of sound
events in 10s long audio clips. Whereby for training only weakly-
labelled data is used. Virtual adversarial training is used for regu-
larization, utilizing both labelled and unlabelled data. Furthermore,
we introduce self-adaptive label refinement, a method which allows
unsupervised adaption of our trained system to refine the accuracy
of frame-level class predictions. The proposed system reaches an
overall macro averaged event-based F-score of 34.6%, resulting in
a relative improvement of 20.5% over the baseline system.

Index Terms— DCASE 2018, Convolutional neural net-
works, Sound event detection, Weakly-supervised learning, Semi-
supervised learning

1. INTRODUCTION

In this paper we summarize the methods we use to solve task 4
[1] of the DCASE 2018 challenge, the large-scale weakly labelled
semi-supervised sound event detection in domestic environments.
In contrast to audio tagging (AT), sound event detection (SED) not
only requires to detect the presence of an event, but also a prediction
about the temporal location in a given audio recording. Whereby in
the data provided by the DCASE challenge, one input sequence pos-
sibly contains multiple occurrences of different event classes with
potential temporal overlaps. Additionally, the training data is only
weakly labelled. Therefore for training, the labels of each clip con-
tain only information about the presence or absence of an event, but
no strong labels which indicate the exact temporal onset and offset.

The proposed method uses a gated convolutional recurrent neu-
ral network (GCRNN). This is similar to the best model of last years
DCASE 2017 challenge task 4 [2] which also used a GCRNN based
approach. Although, the objective of the 2017 and 2018 DCASE
challenge is SED, there are significant differences in the structure
of the provided training data and evaluation metric. More precisely,
the following changes have been made at the 2018 challenge:

• The amount of weakly labelled training data is significantly
smaller, 1,578 compared to 51,172.

• In addition to the weakly labelled training set, there are unla-
belled in-domain and unlabelled out-of-domain sets provided.

• The domain of the events is different: domestic environments

compared to smart cars. Whereby the number of classes de-
creased from 17 to 10.

• For evaluation, an event-based F-score with a 200ms collar on
onsets and offsets is used, instead of a segment-based error rate
which is determined of one-second segments.

With our work we show that a GCRNN based approach for SED
similar to [2], is also suitable in a setting with the aforementioned
differences. Whereby we introduce two major changes:

First, to incorporate the provided unlabelled data we use virtual
adversarial training (VAT) [3]. VAT has, amongst others, already
been used successfully in semi-supervised text [4], image classifi-
cation [3], acoustic event detection [5] and phone classification [6]
tasks. Furthermore, VAT showed competitive performance against
other deep semi-supervised learning algorithms [7].

Secondly, as an extension to the attention mechanism we intro-
duce an algorithm we call self-adaptive label refinement (SALR),
which uses unlabelled input data and clip-level class predictions to
refine the frame-level predictions of our model.

2. PROPOSED METHOD

2.1. Gated convolutional recurrent neural network

The winning team of last year’s DCASE SED task [2] showed that
using gated linear units (GLUs) [8] instead of commonly used acti-
vation functions like rectified linear units (RELUs) or leaky ReLUs
in the CRNN is a useful approach for SED.

Gating mechanisms have been used successfully in a variety of
neural network architectures. For example in RNNs using LSTM
[9] cells, which have a separate input, output and forget gate. The
rough idea behind gating mechanisms is to have a gate which can
control how information flows in the network.

In the setting of SED, the GLU units should adapt their be-
haviour such that they act as an attention mechanism on the time-
frequency (T-F) bin of each feature map. They can set their value
close to one if information related to any of the considered audio
events passes through, and otherwise block the flow of unrelated
information by setting their value close to zero.
GLUs are defined as follows:

Y = (W ∗X+ b)� σ(V ∗X+ c), (1)

where W and V denote the convolutional filters with their respec-
tive biases b and c, σ is the sigmoid function, X denotes the input
to the layer, and � denotes elementwise multiplication.
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Figure 1: Network structure

Figure 1 shows how the gated CNN blocks are incorporated into
the network, whereby in our model we use three subsequent gated
CNN blocks.

The gated CNN blocks are followed by a bidirectional RNN
containing 64 units in the forward and backward path, their output
is concatenated and passed to the attention and classification layer
which are described in Section 2.3.

The final prediction yc for the weak label of class c is deter-
mined by the weighted average of the element-wise multiplication
of the attention and classification layer output of class c:

yc =

∑T
t zclac (t)� zattc (t)∑T

t zattc (t)
, (2)

where zclac (t) and zattc (t) are the outputs of the classification layer
and of the attention layer of class c. T denotes the frame-level res-
olution of the input spectrogram, which is equal to the resolution of
zclac (t) and zattc (t), and t is the frame index.

2.2. Virtual adversarial training

We make use of VAT [3] for regularization. We calculate the virtual
adversarial loss such that the robustness of the model’s posterior
distribution of predictions at clip-level p(y|x) is increased for small
and bounded perturbations of the log-scaled mel-spectrograms x.

The adversarial perturbation rv-adv is computed by maximizing
a non-negative distance function between the unperturbed p(y|x; θ)
and perturbed p(y|x+ r; θ) posterior. Whereby θ denotes the cur-
rent model parameter. The Kullback-Leibler divergence KL is used
as distance function between p(y|x; θ) and p(y|x+ r; θ), and ||r||
is limited to the sphere around x with some radius ≤ ε, i.e. rv-adv

is determined as

rv-adv = arg max
r,‖r‖≤ε

KL[p(y|x; θ)||p(y|x+ r; θ)]. (3)

There is no evident closed-form solution for rv-adv , but [3]
gives a detailed derivation how to calculate an approximation of
rv-adv . When using VAT the following additional cost is added to
the objective function:

KL[p(y|x; θ)||p(y|x+ rv-adv; θ)]. (4)

Since calculating the virtual adversarial perturbation only requires
input x and does not require label y, VAT is applicable to semi-
supervised training. Therefore we use it to incorporate the unla-
belled in-domain dataset into training. However, we decided not to
include any of the provided unlabelled out-of-domain data since it
has been shown previously that adding unlabelled data from differ-
ent classes than the labelled data, can actually decrease the perfor-
mance of semi-supervised learning algorithms like VAT [7].

2.3. Attention mechanism

To predict the temporal locations of each audio event which is pre-
sented in a given input sample, we use a similar approach as used
in [2]. We extend it by introducing self-adaptive label refinement
based on weak and strong prediction alignment. This selects for
each event class an appropriate post-processing on the networks at-
tention output. In the following the term weak prediction is used
to refer to predictions at clip-level and strong prediction is used to
refer to class predictions at frame-level.

As depicted in Figure 1, the output of a bidirectional RNN is fed
into both an attention and a classification layer. The classification
layer uses a sigmoid activation function to predict the probability of
each occurring class at each timestep. While the attention layer uses
a softmax activation over all classes. Intuitively, using a softmax
in the attention layer should aid the network to learn to pick the
most dominant class at each frame. Although this might not be an
ideal approach if temporal overlaps of multiple events are occurring,
since then a more dominant event might be able to suppress the
activation of another one.

Figure 2 shows the output of the classification and attention
layer for one audio clip of the development set containing several
events labelled as dog. It can be seen that there is a clear corre-
lation between ground truth event labels and the activations of the
attention and classification layer. However it is not obvious how
to extract the exact start and end points of each individual event
from the layer activations. Our experiments showed that just tak-
ing the product of the attention and classification layer activations,
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Figure 2: Classification and attention layer activations for file:
Y0a8RB5eOGJ4 30.000 40.000.wav and class dog.

thresholded with a fixed value for all classes, e.g. 0.5, gives un-
satisfactory results. Also it has been shown in similar weakly la-
belled SED settings that the trained network adapts differently for
different classes [10]. Especially there seems to be a difference be-
tween classes which tend to have short event durations in contrast
to classes which span the majority of timesteps of a clip. Consider-
ing this, it might be necessary to use a different post-processing for
each class on the networks attention output to account for that. The
fact that no strong event annotations are available for training makes
this a non-trivial problem, otherwise a simple approach would be to
test several post-processing methods and select for each class the
one which gives the best performance.

2.4. Self-adaptive label refinement (SALR)

We introduce self-adaptive label refinement, where we check the
alignment between strong and weak predictions, and use this as an
approximate prediction how well a given post-processing method
performs at extracting the right onset and offset of events. Using this
approach we can use unlabelled data to estimate how well a given
post-processing parameterization performs for each class, and take
the best performing parameterization for our final strong prediction.

For post-processing we threshold the output value of the classi-
fication layer, followed by a median filter. Therefore the parameters
we vary in each iteration are the threshold, and the width of the me-
dian filter. However it should be noted that many other methods for
post-processing are possible, e.g. a second neural network which
maps between the attention layer of the first network and strong
predictions might be a potential approach.

In particular, when training has finished, self-adaptive label re-
finement repeats the following steps on each class with different
post-processing parameterizations:

1. A full forward pass is performed to create weak and strong
predictions for each clip. Whereby the following steps are
only carried out for clips where the weak prediction indicates
occurrence of the current class.

2. Using the strong predictions, the spectrogram of each clip is
split up into two groups of new samples.
Each single event occurrence of the examined class is
extracted into new samples containing only the temporal
frames of the spectrogram which possibly contains the event.
Those new samples are labelled with 1.
Additionally, another sample is created which contains only
the temporal frames of the original spectrogram where no
occurrence of the given class was predicted. Those are all
labelled to 0.

3. The generated new samples are then passed through the net-
work. Using the resulting weak predictions and the labels
assigned before, a crossentropy loss for each class is calcu-
lated. This loss indicates how good the weak and strong pre-
dictions align.

Afterwards for each class, the post-processing with the smallest
loss value is selected.

This approach does not need any labels, neither strong nor
weak. Therefore our method for post-processing selection is ap-
plicable using data of both, the weakly-supervised and the unsu-
pervised dataset. Also the method can be used to adapt the post-
processing at inference time to new unseen data.

2.5. Training

The cross entropy loss between the predicted probabilities for each
class and the weak ground truth labelling over all labelled clips in a
batch is calculated as follows:

E = − 1

N

N∑
i

M∑
c

l(i)c log(y(i)c ), (5)

where the number of classes is denoted by M, the number of weakly
labelled 10 second audio clips by N, y(i)c denotes the predicted prob-
ability for class c of sample i, and l(i)c is the given binary label in
the weakly labelled train set.

In each step a batch containing an equal distribution of samples
from the labelled and unlabelled in-domain set is processed. The
total loss consists of the cross entropy loss of the labelled samples,
regularized with VAT depending on both the labelled and unlabelled
samples weighted by a factor λ:

L = − 1

N

N∑
i

M∑
c

l(i)c log(y(i)c )

+ λ

N′∑
i

KL[p(y|x(i); θ)||p(y|x(i) + r; θ)],

(6)

where N ′ denotes the sum of labelled and unlabelled in-domain
clips in a batch, x(i) is the log-scaled mel-spectrograms of a labelled
or unlabelled in-domain clip with index i.

The loss was optimized using Adam [11] with a learning rate of
0.001 and a batch size of 30. The network was implemented using
tensorflow [12].

3. EXPERIMENTS AND RESULTS

3.1. Dataset

The method is evaluated using a subset of the Google Audioset [13],
which was provided with task 4 of the DCASE 2018 challenge[14].
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no VAT VAT
challenge baseline no refinement SALRtrain SALRdev. no refinement SALRtrain SALRdev.

Class F1 ER F1 ER F1 ER F1 ER F1 ER F1 ER F1 ER
Alarm bell 3.2% - 27.0% 1.45 22.4% 1.18 18.8% 1.23 27.9% 1.38 21.0% 1.14 18.2% 1.12
Blender 15.4% - 18.5% 2.65 10.7% 1.25 26.9% 1.23 29.9% 1.52 23.2% 1.33 38.1% 0.97
Cat 0.0% - 9.5% 3.27 5.0% 1.40 33.5% 1.35 4.9% 2.87 19.2% 1.54 25.2% 1.30
Dishes 0.0% - 5.6% 1.65 0.0% 1.16 0.0% 1.16 29.3% 1.93 32.5% 1.16 32.5% 1.16
Dog 0.0% - 20.5% 2.16 18.5% 1.40 18.6% 1.39 7.4% 2.00 2.3% 1.36 15.8% 1.36
Elec. Shaver 32.4% - 18.4% 2.86 50.0% 0.86 50.0% 0.86 14.1% 2.61 40.0% 0.96 40.0% 0.96
Frying 31.0% - 20.4% 4.54 43.5% 1.62 42.9% 1.67 18.0% 3.79 40.0% 1.50 40.7% 1.46
Running water 11.4% - 17.5% 1.86 37.7% 1.00 38.0% 0.99 22.6% 1.89 31.1% 1.22 32.4% 1.21
Speech 0.0% - 36.5% 1.38 44.6% 0.95 36.2% 1.15 37.5% 1.25 41.3% 0.97 40.2% 0.98
Vac. cleaner 46.5% - 20.0% 3.11 48.8% 1.17 46.5% 1.28 21.8% 2.58 40.5% 1.31 63.0% 0.75

14.06% 1.54 19.4% 2.49 28.12% 1.19 31.2% 1.23 21.3% 2.18 29.1% 1.25 34.6% 1.12

Table 1: Class-wise results on the development set, total scores are macro averaged.

The majority of the provided audioclips are 10 seconds long, a
few audioclips are slightly shorter, for further processing we zero-
pad those to a length of 10 seconds. Each audioclip contains one
or multiple sound events of 10 different classes, whereby different
events may overlap. The dataset consists of a training, testing and
evaluation subset.

The training subset consists of 1,578 weakly labelled clips, an
unlabelled in-domain set of 14,412 clips and an unlabelled out-of-
domain set of 39,999 clips extracted from classes that are not con-
sidered in task 4.

The test set contains 288 clips, whereby the distribution in terms
of clips per class is similar to the weakly labelled training set. For
the test set strong labels from human annotators are given, therefore
timestamps for the onset and offset of each event in the clip are
included. For training only weak labels are used. The weak labels
indicate if a given event occurs somewhere in a 10s clip, however no
information about the onset and offset of the events, nor how often
the event occurs is given. This setting can also be considered as a
multiple instance learning (MIL) problem [10].

Log-scaled mel-spectrograms of each clip are passed as input to
the network, for calculation the librosa library [15] is used. Before
the spectrograms are calculated, each clip is converted to a mono
signal with a sampling rate of 16,000 Hz. For calculation of the log-
scaled mel-spectrograms a hamming window of length 1024 with an
overlap of 360 is used, this gives 240 frames with 64 mel frequency
channels for each clip.

3.2. Baseline system

The organizers of the DCASE challenge provided a baseline system
for task 4 [1]. The system consists of two models based on the same
structure: three convolution layers with 64 filters of size 3×3, each
one followed by a max pooling layer of size 4 × 1 and a dropout
layer with p = 30%. After the convolutional layers, one bidirec-
tional recurrent layer with 64 GRU units and 30% dropout on the
input is placed. For output, the first model uses a dense layer with
10 sigmoid units and global average pooling across frames to make
clip-level predictions, and the second model uses a time distributed
dense layer with 10 sigmoid units to predict events at frame-level.
Training of the system is performed in two steps:

1. The first model is trained with the weakly labelled training
set, then the trained model is used to generate weak labels
for the unlabelled in-domain set.

2. The second model is trained on the unlabelled in-domain set,
using the weak labels generated beforehand. In this second

training pass the weakly labelled set is used for validation.

As input, each 10 second audio file is divided into 500 frames
of 64 log mel-band magnitudes.

3.3. Evaluation

For evaluation the macro averaged event-based F-score [16] is used.
The event-based metrics are calculated using the open source tool-
box sed eval [17]. As given by the challenge, for calculation of
event-based metrics a 200ms collar on onsets and a 200ms / 20%
of the events length collar on offsets was set. For calculation of
the total performance over all individual classes, macro averaging
is used. This has the effect that each class has equal influence on
the final metrics, even if the distribution of classes in the tested set
is unbalanced.

3.4. Results

Table 1 shows the event based F1 scores and error rates of our sys-
tem on the development set. We compare the resulting scores of
our system without post-processing refinement, and when we per-
formed self-adaptive label refinement using data either of the train-
ing or the development set. Additionally, we also show the influence
of VAT. When no post-processing refinement was done, we calcu-
lated the strong labels with a fixed threshold of 0.5 for all classes
and apply no median filter. It can be seen that both SALR and VAT
increase the performance of the system. Whereby when SALR is
used, the best performance is achieved when the adaption was done
on the development set.

3.5. Submitted systems

Three systems have been submitted to the DCASE 2018 challenge,
whereby self-adaptive label refinement was used to adapt the post-
processing as follows: System one has been adapted to the evalu-
ation set. System two did not use any adaption, but used the same
post-processing with a fixed threshold of 0.5 and a median filter
width of 1. System three has been adapted to the training set.

4. CONCLUSION

In this paper, we proposed a method for sound event detection us-
ing only weakly labelled and unsupervised data. Our approach is
based on GCRNNs, whereby we introduce self-adaptive label re-
finement. This method adapts the postprocessing using unlabelled
data, and increases SED performance. The final F-score of our sys-
tem is 34.6%, which is significantly higher than the score of the
baseline system which is 14.06%.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

5. REFERENCES

[1] R. Serizel, N. Turpault, H. Eghbal-Zadeh, and A. Parag Shah,
“Large-Scale Weakly Labeled Semi-Supervised Sound Event
Detection in Domestic Environments,” in Workshop on
Detection and Classification of Acoustic Scenes and
Events, Woking, United Kingdom, Nov. 2018, sub-
mitted to DCASE2018 Workshop. [Online]. Available:
https://hal.inria.fr/hal-01850270

[2] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-
scale weakly supervised audio classification using gated
convolutional neural network,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018,
2018, pp. 121–125. [Online]. Available: https://doi.org/10.
1109/ICASSP.2018.8461975

[3] T. Miyato, S. Maeda, S. Ishii, and M. Koyama, “Virtual ad-
versarial training: A regularization method for supervised
and semi-supervised learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2018.

[4] T. Miayto, A. M. Dai, and I. Goodfellow, “Virtual adversarial
training for semi-supervised text classification,” 2016.
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