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ABSTRACT 

Audio tagging aims to detect the types of sound events occurring 

in an audio recording. To tag the polyphonic audio recordings, 

we propose to use Connectionist Temporal Classification (CTC) 

loss function on the top of Convolutional Recurrent Neural 

Network (CRNN) with learnable Gated Linear Units (GLU-

CTC), based on a new type of audio label data: Sequentially 

Labelled Data (SLD). In GLU-CTC, CTC objective function 

maps the frame-level probability of labels to clip-level probabil-

ity of labels. To compare the mapping ability of GLU-CTC for 

sound events, we train a CRNN with GLU based on Global Max 

Pooling (GLU-GMP) and a CRNN with GLU based on Global 

Average Pooling (GLU-GAP). And we also compare the pro-

posed GLU-CTC system with the baseline system, which is a 

CRNN trained using CTC loss function without GLU. The ex-

periments show that the GLU-CTC achieves an Area Under 

Curve (AUC) score of 0.882 in audio tagging, outperforming the 

GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 

0.837. That means based on the same CRNN model with GLU, 

the performance of CTC mapping is better than the GMP and 

GAP mapping. Given both based on the CTC mapping, the 

CRNN with GLU outperforms the CRNN without GLU. 

Index Terms— Audio tagging, Convolutional Recurrent 

Neural Network (CRNN), Gated Linear Units (GLU), Connec-

tionist Temporal Classification (CTC), Sequentially Labelled 

Data (SLD) 

1. INTRODUCTION 

Audio tagging aims to detect the types of sound events occurring 

in an audio recording. Audio recordings are typically short seg-

ments such as the audio recordings in IEEE AASP DCASE 2018 

Challenge Task 4 [1]. Audio tagging has many applications in 

information retrieval [2], audio classification [3], acoustic scene 

recognition [4] and industry sound recognition [5]. 

Most previous works of audio tagging relies on strongly la-

belled data or weakly labelled data. In strongly labelled data [4], 

each audio clip is labelled with both the tags and the onset and 

offset times of sound events. However, labelling strong label is 

time consuming and labor expensive, resulting strongly labelled 

data is scarce and its size is often limited to minutes or a few 

hours [6]. Thus the audio research community have turned to 

large-scale datasets without the onset and offset times of sound 

events, which is referred to as Weakly Labelled Data (WLD) [7]. 

WLD is also called clip level labelled data. In WLD, only the 

presence or absence of sound events are known, but the occur-

rence sequence of sound events are not known. 

In this paper, we explore the possibility of Sequentially La-

belled Data (SLD) in real-life polyphonic audio tagging. SLD is 

a type of audio label newly proposed in [8]. In SLD, both the 

tags of audio clip and the sequence of tags are known, without 

the onset and the offset of tags. SLD reduces the workload of 

data annotation and avoids the problem of inaccurate onset and 

offset annotation of tags in strongly labelled data. In addition, 

SLD contains the sequential information of tags which is not 

provided by WLD [8]. However, in the previous work [8], the 

SLD was the synthesized monophonic audio based on IEEE 

DCASE 2013 development dataset, there is no overlap between 

sound events. To explore the possibility of SLD in real-life au-

dio recordings, we manually label 1578 polyphonic audios of 

DCASE 2018 Task 4 with sequential labels and release it here1. 

The details of sequential labelling of polyphonic audio record-

ings will be introduced in Section 3. 

To predict the sequential labels of SLD in polyphonic audio 

recordings, we propose to use CTC loss function on the top of 

CRNN with learnable Gated Linear Units (GLU-CTC). This idea 

is inspired by the great performance of CTC in Automatic 

Speech Recognition [9]. CTC is a learning technique for se-

quence labelling with RNN, which allows RNN to be trained for 

sequence-to-sequence tasks without requiring any prior align-

ment between the input and target sequences. In GLU-CTC, 

CTC objective function maps the frame-level probability of 

sound events to the target sequential labels of sound events, 

similar to the pooling layer in neural networks. So we explore 

the performance of this three pooling function: CTC, Global 

Max Pooling (GMP) and Global Average Pooling (GAP) in 

polyphonic audio tagging, based on the same CRNN with GLU. 

This three models are abbreviated as GLU-CTC, GLU-GMP and 

GLU-GAP, respectively. In this paper, the baseline system is a 

CRNN without GLU train with CTC loss function. 

There are two contributions in this paper. First, in poly-

phonic audio tagging we explore the possibility of a new label 

type: Sequentially Labelled Data, which not only reduces the 

workload of data annotation in strong labels, but also indicates 

the sequential information of tags in weak labels. We release the 

SLD of DCASE 2018 Task 4 in here1. Second, to predict the 

sequential labels of SLD in polyphonic audio recordings, we 

                                                           
1 https://github.com/moses1994/DCASE2018-Task4 
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propose to use CTC learning technique to train a CRNN model 

with learnable GLU. And we compare the performance of GLU-

CTC, GLU-GMP, GLU-GAP and the baseline system, which is 

a CRNN train with CTC loss function. There is no GLU in base-

line system.  

This paper is organized as follows, Section 2 introduces re-

lated works. Section 3 describes the annotation method of SLD 

in polyphonic audio recordings. Section 4 describes how the 

CTC uses SLD in polyphonic audio tagging and the model struc-

ture. Section 5 describes the dataset, experimental setup and 

results. Section 6 gives conclusions. 

2. RELATED WORK 

Audio classification and detection have obtained increasing 

attention in recent years. There are many challenges for audio 

detection and tagging such as IEEE AASP challenge on DCASE 

2013 [4], DCASE 2016 [10] and DCASE 2017 [6]. 

Many conventional works of audio classification and audio 

clip tagging used Mel Frequency Cepstrum Coefficient (MFCC) 

and Gaussian Mixture Model (GMM) as baseline system [4]. 

Recent audio classification methods including Deep Neural 

Networks (DNNs) [6], Convolution Neural Networks (CNNs) 

[11] and Recurrent Neural Networks (RNN) [3], with inputs 

varying from Short-Time Fourier Transform (STFT), Mel energy, 

spectrogram, MFCC to Constant Q Transform (CQT) [12].  

The bag of frames (BOF) model was used in [13], where an 

audio clip is cut into segments and each segment inherits the 

labels of the audio clip. BOF is based on an assumption that tags 

occur in all frames, which is however not the case in practice. 

Some sound events such as “gunshot” only happen a short time 

in an audio clip. State-of-the-art audio tagging methods [14] 

transform waveform to the Time-Frequency (T-F) representation. 

Then, the T-F representation is treated as an image which is fed 

into CNNs. However, unlike image where the objects usually 

occupy a dominant part of an image, in an audio clip events only 

occur a short time. To solve this problem, attention models [15] 

for audio tagging and classification are applied to attend to the 

audio events and ignore the back ground sounds. 

3. SEQUENTIALLY LABELLED DATA 

The polyphonic audio data used in this paper is the weak annota-

tions training set of DCASE 2018 Task 4, a subset of Google 

Audio Set [16]. Audio Set consists of an ontology of 632 sound 

event classes and a collection of 2 million human-labeled 10-

second audio clips drawn from YouTube [16]. 

In the training set, the polyphony makes it hard to define 

ordered sequences of sound events. To tackle this problem, we 

use the order of boundaries of each sound event, the order of 

onset and offset, but not the time stamps as the sequential labels. 

For example, we could use the sequential labels dishes_start, 

dishes_end, dishes_start, dishes_end, speech_start, blend-

er_start, speech_end, speech_start, blend_end, speech_end as 

the sequential label for the audio clip in Fig. 1. Another example 

is if the content of an audio clip could be described by a dog 

barks while a car rings, we used the sequential labels ring_start, 

dog_start, dog_end, ring_end as the sequential label. In the 

ground truth label sequence, the tags of the audio clip and the  

Weak labels: (dishes, speech, blender) or (speech, dishes, blender) or (blender, dishes, speech) 

Sequential labels:
(dishes_start, dishes_end, dishes_start, dishes_end, speech_start, 

blender_start, speech_end, speech_start, blend_end, speech_end)

Strong labels:

dishes

speech

blender

 

Figure 1: From top to bottom: (a) waveform of an audio clip 

containing three sound events: “dishes, speech, blender”; (b) 

log Mel spectrogram of (a); Strong labels, sequential labels 

and weak labels of the audio clip. 

sequence of tags are known, without knowing their occurrence 

time. We refer to the audio clip labelled by label sequence as 

Sequentially Labelled Data (SLD). Fig. 1 shows an audio clip 

with strong, sequential and weak tags. 

In this paper, we manually labelled the weak annotations 

training set of DCASE 2018 Task 4 with sequential labels and 

release it after verification. See here1 for more details about SLD. 

4. METHOD 

In this section, we will explain how to use CTC in polyphonic 

audio tagging based on SLD. Then, we will describe the model 

structure used in this paper. 

4.1. CTC in Polyphonic Audio Tagging using SLD 

CTC is a learning technique for sequence labelling, it shows a 

new way for training RNN with unsegment sequences. In fact, 

CTC redefines the loss function of RNN [17] and allows RNN 

to be trained for sequence-to-sequence tasks, without requiring 

any prior alignment (i.e. starting and ending time of sound 

events) between the input and target sequences [9]. In audio 

tagging, we are only interested in the label sequence of corre-

sponding audio clip, not the ground truth alignment of events in 

the audio clip. Thus, we want to marginalize out the alignment. 

To marginalize out the alignment, first, CTC adds an extra 

“blank” label (denoted by “-”) to original label set L [9]. Then, it 

defines a many-to-one mapping β that transforms the alignment 

(i.e. the sequence of output labels at each time step, also called a 

 

 

 

 

 

 

 

Figure 2: Trellis for computing CTC loss function [17] applied 

to labelling ‘CAT’. Black circles represent labels, white circles 

represent blanks. Arrows signify allowed transitions. 
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path [17]) to label sequence. The mapping β removes repeated 

labels from the path to a single one, then removes the “blank” 

labels. For example, β(C-AT-)=β(-CC--ATT)=CAT, that is, path 

'C-AT-' and '-CC--ATT' both map to the label sequence 'CAT'. 

The CTC objective function is defined as the negative loga-

rithm of the total probability of all paths [9] that map to the 

ground truth label sequence. The total probability can be found 

using dynamic programming algorithm [17] on the trellis shown 

in Fig. 2. On the x-axis is time steps, on the y-axis is “modified 

label sequence”, that is target label sequence with blank labels 

added to the beginning and the end and inserted between every 

pair of labels.  

When we use the simple best path decoding to decode the 

output of CTC, the output of CTC is directly the label sequence. 

By this means no threshold is needed to determine whether there 

are corresponding events in the audio clip. This will reduce the 

risk of over-fitting due to specific thresholds, which is an ad-

vantage of using CTC loss function in audio tagging. More de-

tails about CTC can be seen [17]. 

4.2. Model Structure 

Inspired by the good performance of CRNN in audio tagging 

[15], CRNN is used in this paper shown in Fig. 3. First, the 

waveforms of audio clips are transformed to T-F representations 

such as Mel spectrograms. And convolutional layers are applied 

on the T-F representations to extract high level features. Next, 

Bidirectional Gated Recurrent Units (BGRU) are adopted to 

capture the temporal context information. Finally, the output 

layer is a dense layer with sigmoid activation function since au-

dio tagging is a multi-class classification problem [3, 6].  

In the CRNN, the output activation from the CNN layers 

are padded with zeros to keep the dimension of the output the 

same as input. And the max-pooling is applied in the frequency 
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Figure 3: Model Structure. Due to the acoustic event classes 

number is 10 in DCASE 2018 Task 4, thus, for model with 

GMP and GAP layer, N=10. For model with CTC layer, 

N=21 (10 *2+1), the extra ‘1’ indicates the blank label. 

t

f
linear
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⊙ 
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Mel feature  

Figure 4: The Structure of GLU. 

axis only to preserve the time resolution of the input. Clip level 

probability of tags can be obtained from the last layer. To com-

pare the performance of different pooling function, there are 

three pooling operations in Fig. 3, CTC, Global Max Pooling 

(GMP) and Global Average Pooling (GAP). 

4.3. Gated Linear Units 

As shown in Fig. 3, a CRNN model with 13 layers is applied for 

audio tagging. In order to reduce the gradient vanishing problem 

in deep networks, the Gated Linear Units (GLU) [18] is used as 

the activation function to replace the ReLU [19] activation func-

tion in the CRNN model. The structure of GLU is shown in Fig. 

4. By providing a linear path for the gradients propagation while 

keeping nonlinear capabilities through the sigmoid operation, 

GLU can reduce the gradient vanishing problem for deep net-

works [18]. Similar to the gating mechanisms in long short-term 

memories [20] or gated recurrent units [21], GLU can control the 

amount of information of a T-F unit flow to the next layer. GLU 

are defined as: 

 

     * *Y W X b V X c    

 

where σ is sigmoid function, the symbol is the element-wise 

product and  ∗ is the convolution operator. W and V are convo-

lutional filters, b and c are biases. X denotes the input T-F repre-

sentation in the first layer or the feature maps of the interval lay-

ers in model.  

The value of sigmoid function ranges from 0 to 1, so if a 

GLU gate value is close to 1, then the corresponding T-F unit is 

attended. If a GLU gate value is near to 0, then the correspond-

ing T-F unit is ignored. By this means the network can learn to 

attend to sound events and ignore the unrelated sounds. 

5. EXPERIMENTS AND RESULTS 

5.1. Dataset, Experiments Setup and Evaluation Metrics 

In this paper, the training set is 1578 clips (2244 class occurrenc-

es) of Task 4 from domestic environments, which consists of 10 

classes of sound events. We manually label the 1578 audio clips 

with sequential labels and release it after verification, the annota-

tion method is described in Section 3. The test set is 288 poly-

phonic audio clips (906 events) of Task 4 [1]. 

For all the models described in this paper, in training, log 

Mel band energy is extracted in Hamming window of length 64 

ms with 64 Mel frequency bins [22]. For a given audio clip of 

10-second in Task 4, this feature extraction block results in a 

(240×64) output as shown in Fig. 3. 240 is the number of frames  

(1) 
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Table 1: Averaged Stats of Audio Tagging 

 

Metric AUC of each event class avg. 

Event Speech Dog Cat Bell Dishes Frying Blender Water cleaner Shaver AUC Precision Recall F-score 

GLU-GAP 0.895 0.946 0.875 0.820 0.583 0.602 0.641 0.773 0.771 0.758 0.766 0.960 0.588 0.730 

GLU-GMP 0.909 0.946 0.921 0.873 0.669 0.643 0.691 0.813 0.785 0.778 0.803 0.957 0.645 0.771 

GLU-CTC 0.941 0.969 0.994 0.942 0.762 0.905 0.753 0.860 0.850 0.835 0.882 0.816 0.816 0.816 

Baseline  0.912 0.953 0.957 0.836 0.684 0.776 0.795 0.839 0.808 0.808 0.837 0.706 0.763 0.734 

and 64 is the number of Mel frequency bins. The binary cross-

entropy loss [23] is applied between the predicted probability of 

each tag and the corresponding ground truth tag. Dropout and 

early stopping criteria are used in training phase to prevent over-

fitting. The model is trained for maximum 200 epochs with Ad-

am optimizer with a learning rate of 0.001. 

To evaluate the results of audio tagging in clip level in this 

paper, we follow the metrics proposed in [22]. The results are 

evaluated by Precision (P), Recall (R) and F-score [24] and 

Area Under Curve (AUC) [25]. Larger P, R, F-score and AUC 

indicates better performance. 

5.2. Results 

In this paper, the GLU-CTC, GLU-GMP and GLU-GAP all 

contain the learnable GLU, which introduces the attention 

mechanism in the convolutional layers in CRNN. However, 

there is no GLU in the baseline model, which is a CRNN train 

with CTC objective function. To evaluate the performance of the 

models in this paper, we calculate the AUC score of audio tag-

ging results in clip level of these models. As shown in Table 1, 

GLU-CTC achieves an averaged AUC of 0.882 outperforming 

the GLU-GAP and GLU-GMP, and also better than the baseline 

system. Table 1 also shows the averaged statistic including Pre-

cision, Recall, F-score and AUC over 10 kinds of sound events, 

respectively. GLU-CTC mapping performs better than GLU-

GAP and GLU-GMP, too. That is, based on the same CRNN 

model with GLU, the performance of CTC mapping function is 

better than the GAP and GMP mapping function in polyphonic 

audio tagging. 

The averaged stats of audio tagging is evaluated in clip lev-

el of audio clips, the frame level predictions of models on exam-

ple audio clip was shown in Fig. 5. In Fig. 5, the predictions of 

GLU-GAP in frame level is always 1, which means the predic-

tions of GLU-GAP in frame level overestimates the occurrence 

probability of corresponding event. While GLU-GMP, in con-

trast, underestimates it. GLU-GMP produces wide peaks, indi-

cating the onset and offset times of event. That shows max pool-

ing has ability to locate event, while average pooling seems to 

fail. The reason may be max pooling encourages the response for 

a single location to be high [26], for similar audio events which 

can obtain similar features. While average pooling encourages 

all response to be high [26], difference features of each event 

make it difficult to locate event. 

In Fig. 5, the GLU-CTC could predict the onset (start) and 

offset (end) tag sequence of corresponding audio recording, 

typically as a series of spikes [17]. Although the spikes align 

well with the actual position of the boundaries of sound events 

in audio recording, there is no time span information about these 

events. The spikes outputted by GLU-CTC could locate corre-

sponding events in the audio clip, while baseline system seems 

to fail, which means the attention mechanism introduced by 

GLU is helpful for audio tagging. The reason may be the atten-

tion introduced by GLU focuses on the local information within 

each feature map, which could help GLU-CTC better learn the 

high-level representations of corresponding audio events. 

 

 

Figure 5: Frame level predictions of GLU-GAP (b), GLU-GMP 

(c), GLU-CTC (d), and Baseline (e). In GLU-CTC and Baseline, 

blue peaks denote the starting and red peaks denote the ending 

of corresponding sound events. 

 

6. CONCLUSION 

In this paper, we explore the possibility of a new type of audio 

label data called SLD in polyphonic audio tagging. To utilize 

SLD in audio tagging, we propose a GLU-CTC model. In GLU-

CTC, CTC layer maps frame level tags to clip level tags, similar 

to the pooling operations. Experiments show GLU-CTC outper-

forms GLU-GAP and GLU-GMP. Finally, we released the se-

quential labels of DCASE 2018 Task 4 after verification. In the 

future, we will explore the possibility of SLD in sound event 

detection with polyphonic audio recordings and try to expand 

the size of SLD.  
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