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ABSTRACT

As a means of searching for desired audio signals stored in a
database, we consider using a string of an onomatopoeic word,
namely a word that imitates a sound, as a query, which allows the
user to specify the desired sound by verbally mimicking the sound
or typing the sound word, or the word containing sounds similar
to the desired sound. However, it is generally difficult to realize
such a system based on text similarities between the onomatopoeic
query and the onomatopoeic tags associated with each section of
the audio signals in the database. In this paper, we propose a
novel audio signal search method that uses a latent variable space
obtained through a learning process. By employing an encoder-
decoder onomatopoeia generation model and an encoder model
for the onomatopoeias, both audio signals and onomatopoeias are
mapped within the space, allowing us to directly measure the dis-
tance between them. Subjective tests show that the search results
obtained with the proposed method correspond to the onomatopoeic
queries reasonably well, and the method has a generalization ca-
pability when searching. We also confirm that users preferred the
audio signals obtained with this approach to those obtained with a
text-based similarity search.

Index Terms— audio signal search, onomatopoeia, latent vari-
able, encoder-decoder model

1. INTRODUCTION

Recently, a large amount of audio data is being accumulated in local
storage or on the Internet, and the demand for an audio signal search
technique has been increasing. Audio signal search methods can be
divided into two types according to query types: search with an
audio query and search with a text query.

For the former, searches based on audio feature matching is
widely utilized [1]. However, except for the cases such as audio
fingerprinting, there are generally many cases where the audio sig-
nal or feature is difficult to obtain to use as a query. For exam-
ple, sound engineers who want to find specific sound effects in a
sound database will not have the desired signal that can be used as
a query. For the latter type of search, sound classification or de-
scription tags must be attached to acoustic signals in advance. For
example, a video hosting service can use metadata, the anchor texts
of incoming links, and comments as text information. However, it
is widely known that automatic audio classification or description
is not a simple task [2], and therefore, this approach sometimes re-
quires a lot of human labor.

Against this background, we propose the use of onomatopoeias
as audio search queries. The application we have in mind is a
generic sound search system that allows users to find or locate their

desired sounds. For example, it would be useful to be able to spot
specific audio samples or events, such as birds’ songs, machine fail-
ure sounds, or accident sounds, from among a vast amount of stored
data.

Onomatopoeias are the words that imitate non-speech sounds
within the pronunciation of a certain language system, and there
are two modes: written and spoken. Onomatopoeias are widely
seen in many languages, including English, Chinese, and Japanese,
and they effectively support our daily communication. The use of
onomatopoeias helps us to express acoustic information in a form
that others can easily understand [3]. In previous studies, they
have been effectively used for intuitive audio searches [4], and as
a kind of classification tags for acoustic events [5, 6]. Up to now,
most research using onomatopoeias for audio search has been text-
based, which means it was based on the textual similarities between
the onomatopoeic query and the onomatopoeic tags attached to the
acoustic signals in advance [7]. However, as detailed in the follow-
ing section, this approach poses several problems.

To solve these problems, here we propose a method that takes
advantage of a latent space. The space is obtained through the learn-
ing process of an encoder-decoder model [8, 9] for onomatopoeia
generation [10]. The space can be sufficient to allow it to be shared
by onomatopoeic and audio signal encoders. This allows us to
directly measure the distance between a written or spoken ono-
matopoeia and a section of an audio signal, which means that we can
perform a similarity search for audio signals with an onomatopoeia
query, without audio classification, description or transcription.

The rest of this paper is organized as follows. Section 2 dis-
cusses the problems of the existing text-based audio search meth-
ods. Section 3 introduces our method. Section 4 evaluates our pro-
posed system. Section 5 concludes the paper.

2. PROBLEMS WITH TEXT-BASED AUDIO SEARCH

Previous work on audio signal search with an onomatopoeic query
has usually been based on the similarity between the query text
and the onomatopoeia tags associated with each audio signal in the
database. In addition to the preprocessing, or human labor, needed
to attach such tags in the database, this approach essentially poses
the following problems.

First, many search results can give the exactly same similarity
to a query. This is due to the fact that onomatopoeias are highly-
compressed, coarsely-quantized representation of sounds. This
makes it difficult to obtain an appropriately ordered result list. As
the database grows in size, the usability can be seriously degraded.

Second, it is generally difficult to determine one correct ono-
matopoeic tag for an audio signal; that is, one audio signal can be
described as different onomatopoeias, depending on the listeners.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

This is due to the intrinsic ambiguity in onomatopoeic expressions
[11]. For this reason, the quality and quantity of the onomatopoeic
tags in the database greatly affect the accuracy, efficiency and us-
ability of the search.

3. SEARCH BASED ON LATENT VARIABLES

3.1. Audio search problem definition

Let zx be a latent variable derived from an audio signal x, and zl

be an onomatopoeic latent variable derived from an onomatopoeia.
Here, a latent variable is a fixed-dimensional vector. When zx,zl

are two points in the shared latent space V ⊂ Rn, the distance be-
tween the audio signal and the onomatopoeia is defined as follows:

D(x, l) ≡ ∥zx − zl∥. (1)

∥·∥ is norm on V . Here, audio search is defined as finding the near-
est audio signals to a query based on the distance given in Eq. 1.
Hereafter, we assume the query is given in the form of a written
onomatopoeia, although the same framework can be applied to the
case of spoken onomatopoeias.

3.2. Extracting latent variables

We employ an onomatopoeia generation model to calculate zx from
the corresponding audio signal. The model is based on the idea
that an onomatopoeia phoneme string l is generated according to
a conditional probability distribution p(l|zx). That is, it generates
the onomatopoeia string l̄, which has the highest probability given
an audio signal.

l̄ = argmax
l

p(l|zx) (2)

This estimation is decomposed into: (1) the estimation of a map-
ping f : x → zx, namely the extraction of a latent variable from
an audio signal x, and (2) the generation of the most plausible ono-
matopoeia l̄ given the latent variable zx. The former step is used to
obtain zx from x.

The onomatopoeic latent variable zl is extracted from an ono-
matopoeia l as follows. With the onomatopoeia generation model,
the probability of zl is given by the conditional probability density
distribution p(z|l), which is the likelihood function of l. Thus, we
regard the conditional expectation of z as the onomatopoeic latent
variable zl. That is, a mapping g : l → zl, namely the extraction
of the latent variable from an onomatopoeia, is formulated as:

g(l) =

∫
V

zp(z|l)dz. (3)

3.3. Solution with neural networks

Ikawa et al. [10] proposed using an encoder-decoder model to ob-
tain onomatopoeic representation from sounds. The encoder corre-
sponds to the mapping f and the decoder corresponds to the esti-
mation of l̄ from zx, and they are estimated simultaneously.

We used the encoder-decoder model shown in Figure 1. The
audio latent variable zx is calculated from acoustic features. Here-
after, we call this part an audio signal encoder. Then, the initial
states of the decoder-LSTMs are calculated from zx. Here, the di-
mension of the latent space V is determined by the number of units
of the corresponding layer of the neural network. Using tanh as the
activation function, each element of z takes the value [−1, 1].
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Figure 1: Block diagram of the audio signal encoder-decoder
model.
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Figure 2: Block diagram of onomatopoeic encoder model.

The mapping g can also be obtained using a neural network
(hereafter, onomatopoeic encoder). Figure 2 shows the structure
of the onomatopoeic encoder. The estimated mapping ĝ = gθ̂ is
acquired based on the learned parameters of the onomatopoeic en-
coder θ̂. With the estimated audio signal encoding mapping f̂ , the
loss function used to train the onomatopoeic encoder is written as:

L(θ) = ∥gθ(l)− f̂(x)∥, (4)

where the definition of norm is the same as in Eq. (1).

3.4. Audio signal search

Using the estimated mappings f̂ , ĝ, the audio signal search is real-
ized by measuring the distances between the onomatopoeic query
and each audio signal in the database:

D̂(x, l) = ∥f̂(x)− ĝ(l)∥. (5)

The neural networks are trained with a set of audio signals as-
sociated with onomatopoeic tags. Unlike the existing text-based
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Table 1: Experimental conditions
LSTM cells 512
Batchsize 256
Output phoneme labels 32
Optimizer ADAM [14]
MFCC dimension 20
FFT window (MFCC) 2048 samples
FFT shift (MFCC) 512 samples

search methods described in section 2, once the test set is given,
our method does not need an onomatopoeic tag for any of the audio
signals in the database.

4. EXPERIMENTS

We evaluate the proposed method from two standpoints: the ap-
propriateness of the search results and by comparing it with a text-
based search. In both cases, the task is to find the nearest neighbor
signal. For an audio signal database X = {x1,x2, . . . ,xn} and
an onomatopoeic query l, the nearest neighbor signal x̄(l) is repre-
sented as:

x̄(l) = argmin
xi∈X

D(xi, l). (6)

4.1. Dataset

We used a subset of the audio signals contained in the Real World
Computing Partnership (RWCP) sound scene database [12] to train
the neural networks. The database includes various sound samples
recorded without background noise in an unechoic environment and
digitized at 48 kHz, with linear PCM of 16 bit accuracy.

For the training, we chose 709 signals, including those made by
bells, coins, and hitting wood with a stick. The number of the class
labels (bell, coin, etc.) was 81, and 7 to 10 signals were sampled for
each class.

To build the training set, onomatopoeic tags were collected
from human listeners. Considering the ambiguity of onomatopoeia,
multiple onomatopoeic tags were attached to each audio signal. To
accomplish this, 73 Japanese speakers were asked to produce three
onomatopoeias for each sound using katakana, which is a Japanese
syllabary. Each katakana answer was converted to a string based on
the International Phonetic Alphabet (IPA) [13] and used as an ono-
matopoeic tag. In Japanese, onomatopoeias are usually written in
katakana, and it is straightforward to convert katakana to IPA, and
vice versa. We associated 12 onomatopoeias for each audio signal
in the dataset.

Note that we used the IPA symbols as a simple universal repre-
sentation of pronunciation in the experiments, but any phonogram
sequences, or texts, can be used in our framework.

4.2. Learning of the encoder-decoder onomatopoeia generation
model

Table 1 lists the experimental conditions. For simplicity, we used a
series of mel-frequency cepstral coefficients (MFCC) as the input.
As output phonemes, we used 29 kinds of symbols that consist of
the standard IPA phonetic symbols and Japanese-specific ones: “ð”
for moraic nasal, “H” for the second mora of a long vowel and “Q”
for a moraic silence when emphatic. In addition, we used three
special symbols: “BOS (beginning of the sequence),” “EOS (end of
the sequence),” and “UNK (unknown).”

Figure 3: Onomatopoeic latent variables whose dimensions are re-
duced from 128 to 2 by using PCA. It is shown that onomatopoeias
with similar characteristics (e.g. “koroð” and “korokoro”) are
closely located.

From the preliminary experiments, we chose 128 as the number
of latent variable dimensions. After 34 epochs of learning, the audio
signal encoder-decoder model achieved a 9.9% word error rate and
a 4.0% mean phoneme error rate for an onomatopoeia generation
task [10], with a test set consisting of 101 audio signals, which were
again sampled from the RWCP dataset excluding the ones used for
the network training.

4.3. Learning of the onomatopoeic encoder

The same training data were used for training the onomatopoeic
encoder as in the previous section. L1-norm was employed as the
loss function (Eq. (4)). Figure 3 shows an example of the resulting
distribution of onomatopoeic latent variables. It is observed that
the onomatopoeias with similar characteristics are localized to each
other in the latent space.

4.4. Experimental setups and results

Experiment 1: Suitability of signals found for queries

This experiment was designed to confirm whether the found signals
correctly corresponded to the onomatopoeic queries.

The subjects were presented with an onomatopoeia in katakana
on a display, which was a query, and then with an audio signal,
which was a result of the nearest neighbor search using the pro-
posed method. They were then asked to choose one of five options:
“very suitable,” “relatively suitable,” “neutral,” “relatively unsuit-
able,” and “very unsuitable.” We performed the experiment using
two different audio databases:

• A database consisting of the above-mentioned “training” set
sampled from the RWCP database (hereafter, the RWCP test
set)

• A database consisting of the sounds sampled from another
dataset (hereafter, the external test set)

The former was used to verify the basic behavior, and the latter
was used to evaluate the generalization performance of the proposed
method.

For the external test set, we used part of Free Sound Dataset
Kaggle 2018 [15], which is a subset of FSD [16] and is used for
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Figure 4: Distributions of audio latent variables for the external test
set. Dimensions of each latent variable are reduced from 128 to 2 by
using PCA. It is observed that the samples that belong to the same
class tend to be localized in this space.

Figure 5: Suitability of the audio signals presented by the search

the general-purpose audio tagging task in the DCASE 2018 CHAL-
LENGE. There were 11,719 audio signals. The MFCC sequence
for each audio signal was calculated according to Table 1 after con-
verting the sampling frequency from 44.1 kHz to 48 kHz by using
FFmpeg [17]. Figure 4 shows the distributions of the audio latent
variables of some of the external test set obtained by the trained
model visualized by PCA.

We chose 217 Japanese onomatopoeias as the queries for each
test set. There were 20 subjects, and the total number of responses
for each test set was 4,340.

Figure 5 shows the result. The most frequent response for both
test sets was “relatively suitable”. For the RWCP test set, 58.7%
of the responses were “suitable,” showing that the proposed method
worked effectively. For the external test set, the “suitable” responses
amounted to 39.7%, which is fewer than the RWCP case. This is be-
cause the number and variations of audio signals included in the ex-
ternal test set is much greater than that of the training set. However,
this still means that the proposed model has a generalization ability
even for the external test set, because if the audio samples were ran-
domly presented in this test, most responses must have been “very
(or relatively) unsuitable”.

Experiment 2: Comparison of the proposed method and the
text-based method

We used the audio database that consisted of the same audio sam-
ples as those used in the network training in order to evaluate
whether the search results obtained with the proposed method were

Figure 6: Comparison of the proposed method and the text-based
method

preferable to those obtained with the text-based method. The sub-
jects were presented with one onomatopoeia on a display and two
audio signals, “A” and “B.” They were then asked to choose one of
five options: “A is much better,” “A is relatively better,” “no dif-
ference,” “B is relatively better,” and “B is much better.” Either
“A” or “B” (randomly selected) was the search result obtained with
the proposed method and the other was the one obtained with the
text-based method.

The text-based method in this experiment was based on the sim-
ilarity measured by the edit (Levenshtein) distance between the IPA
strings. In the audio database, multiple audio signals can corre-
spond to the same onomatopoeic tag, yielding multiple search re-
sults for one query with the same similarity. In such cases, one
signal was randomly chosen as the result.

As in Experiment 1, 217 onomatopoeias were used as the
queries, and 20 subjects undertook the evaluation. The total number
of responses was 4,340.

Figure 6 shows the result. It is shown that the proposed method
is preferable to the text-based method, since the distribution is
clearly biased to the right from the center. For a quantitative anal-
ysis, we assign scores of 2, 1, 0, -1, -2, according to the five kinds
of responses, so that the score become larger when the proposed
method receives a higher evaluation. The mean of the score appears
to be 0.145, and from the t test, it is not 0 at the 1% significance
level. This means that the proposed method produced significantly
better results than the text-based method.

5. CONCLUSION

This paper proposed a novel method for finding audio signals with
an onomatopoeic query. With our method, the distance between
an audio signal and an onomatopoeic symbol sequence is directly
measured in the latent space. We showed the effectiveness of the
proposed method by performing subjective experiments. This pa-
per focused on the use of written onomatopoeias, but we expect that
it is straightforward to train the network so that it accepts spoken
onomatopoeias as queries. Our future work will also include tests
with languages other than Japanese, and a usability study with prac-
tical senarios.
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