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ABSTRACT
In this paper, we describe the techniques and models applied to
our submission for DCASE 2018 task 2: General-purpose audio
tagging of Freesound content with AudioSet labels. We mainly fo-
cus on how to train deep learning models efficiently against strong
augmentation and label noise. First, we conducted a single-block
DenseNet architecture and multi-head softmax classifier for effi-
cient learning with mixup augmentation. For the label noise, we
applied the batch-wise loss masking to eliminate the loss of out-
liers in a mini-batch. We also tried an ensemble of various models,
trained by using different sampling rate or audio representation.

Index Terms— Audio tagging, DenseNet, Mixup, Multi-head
softmax, Batch-wise loss masking

1. INTRODUCTION

Audio tagging is a research area to find one or more labels from
audio signals. It has been studied in various fields including mu-
sic tagging [1], domestic audio tagging [2], and acoustic scene
classification [3]. Similar to audio tagging, sound event detection
(SED) is another area of research to provide additional information
about temporal boundaries of sound events. Despite some differ-
ences such as the optimal size of audio input or integration process
of predicted values, their approaches are generally similar [4, 5].
Both of them have recently adopted deep learning-based approaches
such as convolutional neural networks (ConvNet) [1, 6] and con-
volutional recurrent neural networks (CRNN) [7, 8]. In Detection
and classification of acoustic scenes and events (DCASE) 2017,
ConvNet-based [4, 9, 10] and CRNN-based [5, 11, 12, 13] methods
outperformed conventional machine learning methods such as hid-
den Markov model (HMM) [14], non-negative matrix factorization
(NMF) [15], and support vector machine (SVM) [16].

As the complexity of the model increases, preventing overfit-
ting caused by lack of audio data has become more critical. To
this end, data augmentation methods such as time stretching, pitch
shifting, background noise mixing [17] and mixup [18] have been
proposed. More recently, large-scale datasets such as Audioset [19]
and Freesound dataset (FSD) [20] have been released. While data
shortages have shown some improvements, there still exist difficul-
ties associated with ambiguous relationship between an audio and
its labels such as imprecisely labeled audio or many possible inter-
pretations of a single sound.

In DCASE 2018, among the various tasks, task 2: General-
purpose audio tagging of Freesound content with AudioSet labels
aims to recognize and tag sound events of diverse nature, including
musical instruments, human sounds, domestic sounds, animals, etc.
In total of 41 sound event categories are considered, and the audio
samples are provided from FSD.

The framework presented in this paper is based on ConvNet,
specifically a densely connected ConvNet (DenseNet) [21]. We de-
signed our models to have a single-block architecture, in which, all
layers from the very bottom to the top are connected densely. In
addition, we applied several techniques including mixup augmen-
tation, multi-head softmax and batch-wise loss masking, expecting
robust performance and efficient learning against audio-label am-
biguities. Trained models and their ensembles were examined by
using a variety of data representations, including low-level transfor-
mations and sampling rates.

2. DATASET

Freesound Dataset Kaggle 2018 (FSDKaggle2018) was provided
for the challenge [22]. It consists of 11,703 audio recording data,
where 9,473 recordings are for training and 1,600 are for evaluation.
Each data is labeled into one of 41 audio event categories such as
acoustic guitar, bus or laughter. All data is provided in a single-
channel format with a sampling rate of 44.1kHz, while the duration
is varied form 300 milliseconds to 30 seconds. The number of data
per category is not balanced from 94 to 300.

One of the important features of FSDKaggle2018 is that only
3,710 training data labels were verified manually. In case of 5,763
recordings with the non-verified label, some may consist sounds be-
longing to other categories, or not belonging to any of 41 categories.

3. PROPOSED FRAMEWORK

3.1. Preprocessing and batch generation

Except for data resampling, the proposed framework does not have a
preprocessing step. We tried several other techniques, including si-
lence removal and pre-emphasis filtering, but we have not found any
meaningful improvements. We applied 16kHz, 32kHz and 44.1kHz
(original data) for data resampling. Low sampling rates may lose
useful information at high frequencies, but its smaller data size al-
lows to analyze longer time ranges with less computation.

We designed the batch generation framework as follows. First,
we set each batch to have the same number of classes. In this work,
one batch had one recordings for each class, thus the batch size was
41. We expected that it helps to make the optimization process to
be stable and fast.

For efficient mini-batch learning, the length of input data in a
mini-batch have to be fixed. We set it to be 64,000 samples, which
is the same as 4s for 16kHz data and shorter for data with higher
sampling rate. If the original recording is longer than this, a 64,000
sample segment was extracted at random offset. If the length is
shorter, zero padding was applied to the beginning and end of the
data.
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3.1.1. Mixup augmentation

Mixup is an augmentation method which mixes two training data
linearly [18]. Let xi and ti are i-th raw input data and corresponding
binary labels in training dataset, respectively, then mixup generates
an augmented data x̂ which is a mixture of the two original data as
follows:

x̂ = λxj + (1− λ)xk, (1)

where λ ∈ (0, 1). Similarly, the label of the generated data is set to
be t̂ = λtj + (1 − λ)tk. Despite its simplicity, mixup has shown
meaningful improvements in image classification tasks.

We believe that mixup technique is also, or more, suitable for
audio analysis, since the captured audio signal in real-world can be
considered as a linear mixture of various ‘source’ signals. In this
perspective, classifying x̂ to t̂ could be thought of as a task which
detects multiple simultaneous sound events.

In this study, we set λ to be random variable of Beta distribution
of α = β = 0.4. In addition, we set λ > 0.5, so the data of target
class, which is evenly distributed in a batch, is always predominant
in the generated data. Another data class for mixup was randomly
selected. Finally, we also applied the scale augmentation, which
randomly scales the data. This process can be represented by the
following equation.

x̂ = wλxj/max(|xj |) + w(1− λ)xk/max(|xk|), (2)

where w is random variable with uniform distribution for the scale
augmentation.

3.2. Model architecture

While mixup technique meaningfully prevents overfitting and in-
creases validation/test accuracy, it also makes the minimization of
training loss to be difficult. Therefore, our model and learning strat-
egy are focused on efficient training against strong mixup augmen-
tation.

The overall architecture of the presented model is presented in
Fig. 1. And Fig. 2 shows the details of each module in the model.
It is noted that we tried 2 different models, which are ‘logmel-
based’ and ‘waveform-based’, while Fig. 2 only represents logmel-
based model. The minor changes for waveform-based model are
described in each subsection.

3.2.1. Low-level module

The logarithm of mel-scale spectrogram (logmel) has been widely
used as a preprocessing step of audio analysis. In this work, we
applied the logmel transform as a low-level module in our model
and implemented it using kapre. [23].

Detailed low-level module is described in Fig. 2 (a). First, the
input waveform of a size (64000, 1), which denotes (sample, fea-
ture), is normalized by using Batch normalization (BN) [24], then
transformed into a logmel domain with two dimensions, time and
frequency. For the logmel transformation, we used 1024 window
size with 128 shift and 64 mel-frequency bins. After applying BN,
considering the frequency bins as a filter, it is reshaped to a size
(time, frequency, 1) and considered as a grayscale image. As de-
scribed in the next subsection, we aimed to conduct a single-block
densely-connected architecture, so the output features of convolu-
tion layer is concatenated with its inputs.

Low-level-k0

DenseNet-k1

…

DenseNet-kh

n-head Classifier

‘Cello’

Waveform

h modules

Figure 1: Overall architecture of the presented models. Details of
each module are shown in Fig. 2

For the waveform-domain model, the low-level module is sim-
plified and modified as follows:

• Logmel and BN+Reshape layers are removed and input data
after BN is directly concatenated to Conv outputs.

• 3x3 Conv layer is replaced to 1x3 Conv.

3.2.2. DenseNet Module

We designed our model based on DenseNet [21]. Although the orig-
inal DenseNet model divided its architecture into several blocks and
applied densely-connected layer within each block, our model con-
sists of a single block architecture so the very first logmel or wave-
form can be reached even to the very last layer. In our experiments,
increasing the number of densely-connected blocks, or the number
of layer that disconnects the concatenation, slows down the training
speed.

Fig. 2 (b) shows the details of DenseNet module. Because the
size of the filter continues to increase over concatenation, 1x1 con-
volution is first applied to reduce it before 3x3 convolution. We also
applied Squeeze-and-Excitation Network [25] to support efficient
training by adding a few parameters. 2x2 max-pooling is applied to
the last layer of each DenseNet module.

For waveform-based model, it was modified as follows:

• 3x3 convolution is replaced by 1x3 convolution.
• 2x2 max-pooling is replaced by 1x2 max-pooling.

3.2.3. Classifier module

In general, the goal of classification task is to predict a binary target
output vector such as [1, 0, 0]. When mixup is applied, on the other
hand, it needs to predict the real values in the range of (0, 1) such
as [0.9, 0.1, 0] or [0.7, 0.3, 0]. When a stronger mix-up is applied,
the more target values tend to be close to 0.5.

To efficiently train the mixup model, we modified the existing
softmax output layer to have a multi-head architecture, where out-
put is obtained by averaging multiple softmax outputs as Fig. 2 (c).

We expect it will be helpful particularly in training with a strong
mixup augmentation for the following reasons. Since the target val-
ues of augmented data are in the range of (0, 1), the values of each
softmax can be varied even if these average is same as its target.
Moreover, because softmax output is bounded in the range of (0,
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(a) Low-level-k module

BN + Relu + 1x1 Conv (k)

(b) DenseNet-k module (c) n-head classifier module

BN + Relu + 3x3 Conv (k)
Dense (n Multi-Head)

GAP + Softmax

Average

SE

Concatenate

2x2 MaxPool

BN

Logmel

BN + Reshape

3x3 Conv (k)

Concatenate

Figure 2: Details of each module in the presented model. k and n denote the filter size of convolution and the number of softmax layer
respectively. BN: batch normalization, Concatenate: feature concatenation, Relu: rectified linear unit, Conv: linear convolution, MaxPool:
max-pooling, GAP: global average pooling.

1), more margin is allowed when the target is closed to 0.5. In ex-
periments using various n-multi-head settings, we found that larger
n helps to accelerates the training procedure, while its maximum
validation accuracy did not show the meaningful difference.

3.2.4. Overall frameworks

Our entire model is conducted by using above mentioned modules.
For the logmel- and waveform-based model, the detailed parameters
for each module is as follows.

• Logmel-based: Low-level-15, 8 DenseNet modules of k=(16,
32, 64, 128, 256, 512, 512, 512), 8-head Classifier. About 11M
trainable parameters.

• Waveform-based: Low-level-1, 15 DenseNet modules of k=(2,
4, 8, 16, 32, 64, 128, 256, 512, · · · , 512), 8-head Classifier.
About 16M trainable parameters.

3.3. Optimization

Our experiment was implemented using Keras [26]. Adam [27] was
used for optimization. Although it adaptively controls the learning
rate (lr) by itself, we found that manual decay of learning rate helps
the optimization even for Adam. We set lr to be 10−3 for first 150k
mini-batch iterations, 10−4 for next 100k and 10−5 for the last 50k.
Note that the actual learning rate for each minibatch is based on this
lr parameter and adaptation algorithm of Adam.

Validation accuracy was evaluated for every 1k minibatch itera-
tion and the best model was saved for the evaluation. The computa-
tion time for 1k iteration was about 150 s (logmel-based model) and
200 s (waveform-based model) using NVIDIA Tesla P100 GPU.

3.3.1. Batch-wise loss masking

Another consideration for optimization was label noise. The 3.7k
data was verified from the 9.5k data for training and validation and
the remainder was not guaranteed the true label. In this case, this
data with false labels may not only lead to lower classification per-
formance, but also disturb optimization because the model is trained
to handle those outliers. Therefore, we believed that it will be help-
ful if those noise data can be detected and eliminated.

In this work, we used an iterative detection strategy which is
called batch-wise loss masking in this paper. First, the conventional

loss function for a mini-batch is defined as

J =
∑
n

Cn, (3)

where Cn is cross-entropy for a single data in a mini-batch, which
is defined as

Cn = −
∑
c

tn,c log(yn,c), (4)

where tn,c and yn,c denote the label and classification results for
c-th class of n-th data, respectively. On the other hand, if we know
which data is labeled correctly and which is not, we can modify the
loss function to ignore the noise data as follows:

Ĵ =
∑
n

mnCn, (5)

where mn is 1 if the n-th data is correctly labeled and 0 if not.
Since the optimal m is not known in the real-world situations, it is
required to be estimated.

In this study, we used two factors to determine the values of
m. First, verified data can always be considered as a true label.
On the other hand, if some data show particularly high loss in the
current model, then it can be considered as an outlier with wrong
label. From these factors, we set m for each minibatch iteration as
folllows:

mn =

{
1 if vn = 1 or Cn < µ,

0 otherwise,
(6)

where vn denotes whether n-th data is manually verified or not. µ
is defined as follows in this work:

µ = α×max
n

Cn, (7)

where α was empirically set to be 0.8 in this work. This modi-
fication removes some data with the largest errors in the gradient
calculation. In addition, since the outlier data is selected in a batch,
it is expected that data with noise will be gradually found. In our
experiments, this masking technique improved the cross-validation
accuracy about 1 percent point.

3.4. Inference and ensemble

Unlike the training phase, the entire data longer than 64,000 sample
is fed directly into the model. The presented model can handle the
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Table 1: Comparison of MAP@3 scores for models using different
audio representations and sampling rates.

Model 16kHz, 4s 32kHz, 2s 44.1kHz, 1.45s ensemble

logmel 0.932 0.940 0.942 0.947

waveform 0.924 0.925 0.915 0.933

ensemble 0.944 0.949 0.948 0.954

variable length data and the output size is always the same due to
the global average pooling layer. However, we applied zero padding
for shorter data, because we believe that the length of zero-padded
region implies the information about the data length, which can be
an important clue for recognition.

For the ensemble of multiple models, we took the geometric
mean of the model outputs. The logmel-based model was given a
weight of 1.5, considering that it outperformed the waveform-based
model in our experiments. The ensemble process can be represented
as follows:

ỹ = exp(
∑
e

(pe log ye)), (8)

where ye and pe denote the output and the ensemble weight of e-th
model, respectively. The final output was obtained after normaliz-
ing ỹ to its l1-norm.

4. RESULTS

4.1. Comparison of the low-level modules, sampling rate and
temporal length

The first experiment evaluated classification performance at various
low-level modules and sampling rates. It is noted that changing
sampling rate directly affects to the temporal length of the analysis
window since the number of samples in the batch generation was
fixed.

Each model/sampling rate setting is conducted by using en-
sembles of 5 cross-validation models, and Table 1 shows those
MAP@31 score. From those results, we found that logmel-based
models outperform waveform-based ones, while those ensemble
shows meaningful improvements. Although the results were less
sensitive to sampling rate, however, it seems that the higher sam-
pling rate leads to better classification performance, particularly in
case of logmel-based models. Again, ensembles of models with var-
ious sampling rate/temporal length improves MAP@3 score. The
ensemble of all different settings achieved 0.954, which is the state-
of-the-art in this task2.

4.2. Effects of multi-head classifier

The main aim of the multi-head classifier module was to accelerate
the minimization of training loss. To observe the effect of the num-
ber of softmax layers, we compared the history of losses over mini-
batch iteration. For this experiments, we used the logmel-based
model and 44.1kHz sampling rate. Other settings were the same
as previous experiments (mixup, batch-wise loss masking, learning
rate, etc.). Fig. 3 shows the convergence of training loss for n = 1

1https://www.kaggle.com/c/freesound-audio-tagging#evaluation
2https://www.kaggle.com/c/freesound-audio-tagging/leaderboard
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Figure 3: Training loss convergence and validation accuracies of 1-
head and 8-head architecture. Loss over 1 and accuracy below 0.7
are clipped for visual convenience.

and n = 8 in the first 100k iteration. Although the number of pa-
rameters in 7 added layers is around 0.6M, which is only 6% of
n = 1 model, but the n = 8 model shows meaningful faster con-
vergence.

We leave the following discussions as future works. At first, the
effect of multi-head layer on the test data have to be verified from
more experiments. In addition, while the single-block DenseNet
architecture has many filters in the last hidden layer, we expect that
the number of parameters of 0.6M can be reduced by modifying the
model architecture.

5. DISCUSSION

The proposed framework has shown meaningful results in the chal-
lenge, but there is room for improvement. First, the presented
techniques, including single-block DenseNet architecture, Squeeze-
and-Excitation Network, multi-head softmax and batch-wise loss
masking, require further experimentation in various condition for
verify its effectiveness. Here, the various condition may include
applying to different models, datasets or tasks.

We also plan to improve the classification performance of
waveform-based model. Although the logmel operation is sim-
ilar to convolution layer except the squared and log operations,
the waveform-based model showed relatively a lower performance
compared to the logmel-based model. We believe that improving
waveform-based model will be also helpful for the ensemble result.

Another important consideration is minimization of model size,
which is currently 11M to 19M parameters for a single model. The
smaller the size of model is, the easier to be implemented in devices
with less power consumption and smaller size. Therefore, finding
the minimal model size maintaining the detection performance will
improve the usability in real-world applications.

6. CONCLUSION AND FUTURE WORKS

This paper described the audio tagging system submitted in DCASE
2018 task 2. We primarily focused on finding a technique that effi-
ciently learns strongly augmented data. We presented a single-block
DenseNet model, multi-head softmax layer, as well as batch-wise
loss masking. We also tried to ensemble models of various low-
level modules and sampling rate, and it achieved the state-of-the-art
results.
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