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ABSTRACT

Various characteristics can be used to define an acoustic scene,
such as long-term context information and short-term events. This
makes it difficult to select input features and pre-processing meth-
ods suitable for acoustic scene classification. In this paper, we
propose an ensemble model that exploits various input features in
which the strength for classifying an acoustic scene varies: i-vectors
are used for segment-level representations of long-term context,
spectrograms are used for frame-level short-term events, and raw
waveforms are used to extract features that could be missed by exist-
ing methods. For each feature, we used deep neural network based
models to extract a representation from an input segment. A sepa-
rated scoring phase was then exploited to extract class-wise scores
on a scale of 0 to 1 that could be used as confidence measures.
Scores were extracted using Gaussian models and support vector
machines. We tested the validity of the proposed framework using
task 1 of detection, and classification of acoustic scenes and events
2018 dataset. The proposed framework had an accuracy of 73.82%
for the pre-defined fold-1 validation setup and 74.8% for the evalu-
ation setup which is 7th in team ranking.

Index Terms— Acoustic scene classification, DNN, raw wave-
form, i-vector

1. INTRODUCTION

There is an increasing demand for acoustic scene classification
(ASC), a task that can be applied in various machines and intelli-
gent systems. Three noticeable characteristics can be observed by
analyzing the past editions of detection and classification of acous-
tic scenes and events (DCASE) competitions: (a) deep neural net-
works (DNNs) are mainly used with various architectures, (b) var-
ious features such as spectrograms, Mel frequency cepstral coeffi-
cients (MFCCs), and constant Q cepstral coefficients (CQCCs) [1]
are used , and (c) ensemble of two or more classifiers are used with
majority voting or score-sums.

Despite this active research, choosing appropriate features for
ASC tasks remains difficult. One of the main factors complicating
this problem may be the fact that different features are appropriate
for representing each scene in an ASC task. For example, segment-
level features such as i-vectors may be useful for classifying scenes
where the characteristics appear over a long period of time. Frame-
level features such as spectrograms can be used to classify scenes
where events occur in a particular frequency band at short intervals.
To consider the different characteristics that can define an acoustic
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scene, we trained DNNs that input each feature and agglomerate
the results. Additionally, raw waveforms without feature extraction
techniques can be input into the DNN to extract features internally
with respect to ASC tasks during the training phase. By directly
using raw waveforms, the DNN is expected to find most appropriate
features for the target task.

Another problem is that the two methods most frequently
used in ensembles of the DNNs (majority voting and score-
sum) do not include confidence measures. In majority voting,
the output of classifiers are voted, meaning that the precision
( true positive
true positive+false positive

) of the individual class of each system
is not considered. Score-sum of DNN output layer uses a soft-
max activation as confidence score. This neglects the precision of
classification on each class but also considered not ideal because
in the case of softmax outputs, scores can be poorly calibrated [2].
Therefore, we added a separate scoring phase to calculate calibrated
scores from trained DNNs [3].

In this paper, we make the following contributions:

1. Exploit various features including raw waveform that can be
more useful for classifying acoustic scenes.

2. Train Gaussian models and support vector machines that in-
puts the output of DNN’s code layer and extract scores with
confidence.

Specifically, three features are individually studied for ASC
task. The first feature is i-vector [4], a segment-level low dimen-
sional representation, known to be suitable for ASC tasks. The
second feature is a spectrogram, which is widely used for ASC
task with convolutional neural networks (CNNs) [5], [6]. The last
feature is a raw waveform, which is directly input into a DNN.
We hypothesize that segment-level i-vectors can detect scenes us-
ing long-term context information, frame-level spectrogram can de-
tect scenes involving short-term events, and raw waveforms can be
used to find useful features for classifying acoustic scenes using
DNN training. Single Gaussian models and support vector ma-
chines (SVMs) [7] use the outputs of DNN’s code layers as input
and are used as back-end classifiers to obtain confidence score for
each class given an embedding. Final score is derived through score
fusion using confidence scores. The overall proposed framework is
depicted in Figure 1.

The remainder of this paper is organized as follows. Section 2
describes the three DNNs with different features, the back-end clas-
sifiers used in this study, and the ensemble methodology. The exper-
imental settings and system specifications are presented in Section
3 with experimental results. The paper is concluded in Section 4.

2. SYSTEM DESCRIPTION

In this section, we describe the three systems in the ensemble ac-
cording to their input features, the back-end classifiers used for scor-
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Figure 1: Illustration of the overall framework.

ing, and the ensemble methodologies.

2.1. i-vector based system

An i-vector (identity vector) is a low-dimensional representation of
a given segment using factor analysis [4]. Regardless of the length
of a given segment, one vector with fixed dimensionality is ex-
tracted. Originally, i-vectors were proposed for speaker verification,
but in previous DCASE challenges, i-vectors have also performed
well on ASC task [8, 9]. In this study, we used i-vectors as one of
our input features, expecting that the segment-level representations
would appropriately classify acoustic scenes defined by long-term
contexts. The i-vector based DNNs is trained using a supervised
training scheme with categorical cross-entropy objective functions
and softmax activation.

2.2. Spectrogram based system

Spectrograms are widely used in audio signal processing systems,
including speech recognition and speaker recognition. We hypothe-
sized that this frame-level feature could be used to detect events oc-
curring in a specific frequency band, and could therefore contribute
to improving performance on ASC task. We used max feature map
(MFM) based 2D CNN architecture to embed the spectrogram ex-
tracted from each segment [10]. In the MFM based architecture,
instead of activation functions such as rectified linear units, a max
operation is applied to multiple feature maps to calculate the out-
put of each layer. In this study, we varied the filter sizes, expecting
that the appropriate filter size would be found in the DNN training
process through competition between filters.

The spectrogram-based system is trained using a metric learn-
ing scheme instead of conventional supervised training with soft-
max activation output layer. This learning scheme inputs two or
more samples and trains the DNN to simultaneously decrease simi-
larities between samples from different classes (= negative similar-
ity) and increase similarities between samples from identical classes
(= positive similarity). The cosine similarities are calculated be-
tween DNN embeddings at the code layer. Additionally, it has been
shown that for performing the training of a DNN, it is more efficient
for generalization to use similarities between an embedding and an
average class embedding [11]. Therefore, the network is trained to
minimize the loss defined by equation (1)

L =
1

Nc

Nc∑
i

Nc∑
j 6=i

(CS(ei,mj)− CS(ei,mi)), (1)

where, Nc is the number of classes, ei is the embedding of a
sample from the i′th class, mi is the average embedding of the i′th

class, and CS(·) is a cosine similarity operation between two em-
bedding vectors. Figure 2 shows the process for calculating the pos-
itive and negative similarity samples defined in equation (1), based
on ten classes. However, in datasets where the number of classes
is small while the number of samples in each class is large, repeat-
edly calculating the average embeddings during the training process
causes a large overhead.

Therefore, we calculated the average embeddings of each class
at the beginning of the training as the centroid of each class and
update it as the DNN training proceedes. The average embedding
mt

i of the i′th class at time t is updated using equation (2)

mt
i = αmt−1

i + (1− α)m̂t
i, (2)

where,m̂t
i is the average embedding of class i calculated for

each mini-batch, and α is momentum value which define a ratio
between mi and m̂i.

Negative sampling is a technique that can effectively improve
the performance of metric learning by searching hard negative cases
[12]. In negative sampling, rather than using all samples, loss is cal-
culated using samples that are relatively difficult to classify. How-
ever, negative sampling is time-consuming, and generally requires
another classifier such as SVM solely for this operation. Instead of
negative sampling, we used the modified loss shown in equation (3)

Lmax =
1

Nc

Nc∑
i

max
{0≤j≤Nc−1,j 6=i}

(CS(ei,mj)

− CS(ei.mi)), (3)

In equation (3), positive similarities are used in the same way
as the conventional loss defined in equation (1). On the other hand,
only one of the Nc − 1 negative similarities is used to calculate
loss, selected through max operations. Figure 3 shows an example
of the operation of equation (3): the training process of e1 in which
similarity with m1, the centroid of the same class, increases, and
the similarity with m2, the centroid of the class that is most hard to
classify, decreases. With such modifications, we expected that the
DNN would be trained to better discriminate acoustic scenes with
similar characteristics.

2.3. Raw waveform based system

Recently, promising results have been observed with DNNs that di-
rectly input raw waveforms. Such DNNs have been proposed for
use with various tasks [13, 14, 15]. Through the visualization of
raw-waveform-based DNN models, it has been shown that the ker-
nels of 1D convolutional layers are trained to detect specific fre-
quency bands [14]. Many raw waveform systems aim to extract
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Figure 2: Concept illustration of the modified metric learning with learned mean embeddings of each class.

Figure 3: Concept illustration of equation (3) .

features that suit the objective defined by the loss function of DNN
better than existing acoustic feature extracting techniques through
extracting most useful frequency bands [14]. In this work, we use
the RACNN-LSTM model proposed by Jung et al. [15] with a few
modifications, considering the DCASE 2018 task 1 dataset. The
raw waveform system that we used consists of convolutional blocks
and fully connected layers: each convolutional block consists of a
1D convolutional layer, followed by batch normalization, rectified
unit activation, and max pooling . The raw-waveform-based DNN
is trained by supervised learning using a categorical cross-entropy
loss function. Modifications and detailed descriptions of the raw-
waveform-based system are present in Section 3.3.

2.4. Back-end scoring

Support vector machine (SVM) with RBF kernel and sigmoid ker-
nel, single Gaussian model with diagonal and full covariance were
used as back-end classifier. Classifiers were trained to discriminate
acoustic scenes using DNN embeddings. In the spectrogram-based
system, we used the code layer directly. The last hidden layer was
used as the code layer for the i-vector and raw waveform systems.
We expected that by using a back-end classifier for scoring instead
of a softmax output, we could make the ensemble of multiple DNNs
more efficient.

2.5. Ensemble method

Scores from each of the back-end scoring classifiers can be sim-
ply summed, because the scores already include the concept of
confidence with a scale of zero to one. However, the different

classifiers can have different discriminative powers for different
acoustic scenes. To incorporate this concept, a precision vector
is calculated based on the classification results for the validation
dataset. The entries of a precision vector is the precision scores

true positive
true positive+false positive

of each classifier for each class. Back-
end classifier scores are multiplied by this precision vector before
they are merged.

3. EXPERIMENTAL SETTINGS

Our experiments in this study used soundfile and scipy python mod-
ules for raw waveform and spectrogram extraction [16]. The Kaldi
toolkit [17] was used for i-vector extraction. The Keras deep learn-
ing toolkit [18] with a tensorflow back-end [19, 20] was used for
DNN training and decoding. The scikit-learn module was used for
Gaussian model and SVM scoring [21].

3.1. Dataset

All experiments in this paper used task 1-a from the DCASE 2018
dataset [22]. Task 1-a in the DCASE 2018 dataset comprises 8,640
audio segments recorded in stereo at a 48 kHz sampling rate with
24 bit resolution and divided into 10 s lengths. Fourfold cross-
validation was conducted using the provided meta data regarding
recording locations. The development set and validation set do not
use audio segments from identical locations. In this paper, we only
report the accuracy of the first fold.

3.2. Feature configurations

We extracted i-vectors from a diagonal Gaussian mixture model
(GMM) with 1024 components, trained with 60-dimensional
MFCC features. A total variability matrix that can extract a 200-
dimensional i-vector was trained for 10 iterations. Neither length
normalization nor linear discriminant analysis were applied after i-
vector extraction.

Spectrograms were extracted by shifting 30 ms windows by 10
ms. A spectrogram was represented by 721 coefficients for each
window, and only 300 coefficients of low frequency bands were
used; we empirically confirmed that low frequency bands are more
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useful for ASC. Finally, a spectrogram of size 499×300 was ex-
tracted from each 10 s segment.

Stereo raw waveforms (with pre-emphasis) are used as input
features to the DNN, resulting in feature shapes of (48,000×10, 2).

3.3. System configurations

The i-vector based DNN comprises 4 fully connected layers. In this
system, the DNN acts only as a feature enhancer for the scoring step
of the task, because the i-vector is already a sophisticated feature at
the segment-level. The four fully connected layers each have 512
units, and L2 regularization is applied.

Spectrogram-based DNNs comprise two fully connected layers
following three MFM layers. Fully connected layers contain 256
nodes activated by a leaky ReLU function [23]. L2 length normal-
ization was applied to the output of the last fully connected layer
following the work of Wan et al., who trained a DNN for speaker
verification using metric learning [11]. The configuration of the
MFM-based system is shown in Table 1. In each MFM layer, the
output is calculated using the max operation between the feature
maps generated by filters of different sizes. We simultaneously ap-
plied two types of pooling layers (max and average pooling) in the
last CNN stage.

Table 1: Configuration of MFM based CNN system.
layer output shape kernel sizes

1st MFM 499×300×32 5×5, 7×7, 9×9, 11×11
Max pooling 166×60×32 3×5

2nd MFM 166×60×64 3×3, 5×5, 7×7, 9×9
Max pooling 55×12×64 3×5

3rd MFM 55×12×64 3×3, 5×5, 7×7, 9×9
Max pooling 1×3×64 55×4

Average pooling 1×3×64 55×4
Concatenation 1×3×128

Flatten 384

Raw-waveform-based DNNs use the RACNN-LSTM model
from Jung et al.’s work, with a few modifications [15]. Modifi-
cations include the following: the stride size of the strided convo-
lutional layer was changed to 12 for a 48 kHz sampling rate, 256
kernels were used for the last convolutional layer, and stereo audio
inputs were used instead of mono audio inputs.

3.4. Results

Experimental results for the provided fold 1 setup of the DCASE
2018 competition are presented in Table 2 in terms of classification
accuracy. Each input feature is examined by four different classi-
fiers, and the best results submitted to the DCASE 2018 competi-
tion are shown. The four columns of Table 2 each represent our
submitted system for the DCASE 2018 competition, in which ‘All’
refers to the ensemble of single Gaussian and SVM classifiers.

Surprisingly, for the input features, raw waveforms performed
the best, with an accuracy of 67.15 %. The three-feature ensemble
increased accuracy more than 6 %. Although we do not show this
result because of paper length limitations, the ensemble results for
any two features improved performance in terms of classification
accuracy. Therefore, we conclude that different features actually
contribute to the ASC task based on the characteristics of each fea-
ture.

For back-end classifiers, we first compared the results of di-
rectly using softmax activation based classification to the results
for separate scoring schemes using single Gaussian and SVM mod-
els. With the raw waveform as an input, conventional classification
showed an accuracy of 64.71 %, while single Gaussian scoring and
SVM scoring using the last hidden layer as code showed accura-
cies of 67.91 % and 66.56 %, respectively. Among the back-end
classifiers, the accuracies of single Gaussian models were approx-
imately 1 % higher, but noticeable differences were not measured.
By applying a precision vector representing the accuracy of each
acoustic scene system, we were able to improve performance when
the precision vector was used with classifiers of the same type (e.g.,
diagonal Gaussian models and full Gaussian models). However, ac-
curacy did not increase when the precision vector was used with
different types of classifiers.

Table 2: Classification accuracy (%) for the individual systems and
four-classifier ensemble system. The four columns indicate the four
systems submitted to the DCASE task 1-a competition (‘All w/o
weight’ is submission 1). ‘w weight’ refers to the case where clas-
sifier outputs were ensembled with the use of a precision vector. All
refers to cases using two Gaussian and two SVM classifiers, Gaus-
sian refers to cases using full and diagonal covariance classifiers,
and SVM refers to cases using SVMs with RBF and sigmoid ker-
nels.XXXXXXXXXsystem

classifier All All Gaussian SVM
w/o weight w weight w weight w weight

raw- 67.15 68.10 67.91 66.56waveform (val)
spectrogram (val) 66.24 66.20 66.44 66.44

i-vector (val) 63.74 63.93 65.17 63.66
Ensemble (val) 73.82 73.23 73.15 72.71

Ensemble (eval) 74.8 74.2 73.8 73.8

4. CONCLUSION AND FUTURE WORKS

Selecting appropriate features for each task is critically important
for machine learning research. However, this is difficult because
of the required domain expertise, such as knowledge regarding the
characteristics of the input data and the understanding of the task
to be performed. Segment-level i-vectors and frame-level spectro-
grams were used to detect both long-term contexts and short-term
events, by training DNNs for each feature. Additionally, raw wave-
forms were used, with expectation that the kernel weights for 1D
convolutional layers would be trained to extract the most discrimi-
native features for each ASC task. We built an ensemble of DNNs
with different input features, using score fusion on single Gaussian
models and SVMs. An accuracy of 73.82 % and 74.8 % was shown
for the DCASE 2018 task 1-a validation set and evaluation set, re-
spectively.

In this study, we exploited multiple DNNs with different archi-
tectures, which respectively received different features. We then
combined the results for each DNN. Training different types of fea-
tures with a single DNN, however, may lead to the synergy of dif-
ferent features when training an integrated DNN. In the future, we
plan to build a single integrated system that simultaneously receives
multiple features. To achieve this type of system, we would need
to simultaneously consider the various characteristics of different
types of features.
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