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ABSTRACT 

Convolutional neural networks(CNNs) has shown tremendous 

ability in many classification problems,  because it could im-

prove classification performance by extracting abstract features. 

In this paper, we use CNNs to calculate features layer by layer. 

With the layers deepen, the extracted features become more 

abstract, but the shallow features are also very useful for classi-

fication. So we propose a method that fuses features of different 

layers(it’s called multi-scale features), which can improve per-

formance of acoustic scene classification. In our method, the 

logMel features of audio signal are used as the input of CNNs. 

In order to reduce the parameters’ number, we use Xception as 

the foundation network, which is a CNNs with depthwise sepa-

rable convolution operation (a depthwise convolution followed 

by a pointwise convolution). And we modify Xception to fuse 

multi-scale features. We also introduce the focal loss, to further 

improve classification performance. This method can achieve 

commendable result, whether the audio recordings are collected 

by same device(subtask A) or  by different devices (subtask B).  

Index Terms— Multi-scale features, acoustic scene 

classification, convolutional neural network, Xception, 

logMel features  

1. INTRODUCTION 

Acoustic scene classification is a very complex problem which 

aim is to recognize the surrounding environment using acoustic 

signals. It has been used in many filed, such as context-aware 

services [1], surveillance [2] and robotic navigation [3]. Acoustic 

scene classification is so important that it has been attracting the 

attention of researchers in machine learning communities. The 

consecutive editions of the IEEE AASP Challenges Detection 

and Classification of Acoustic Scenes and Events(DCASE) [4] 

release the open and established datasets, and provide the scenar-

io to evaluate and benchmark different approaches for acoustic 

scene classification and acoustic event detection, which makes 

the research of acoustic scene classification develop at full speed. 

Nowadays, many methods have been applied to acoustic scene  

classification, such as signal processing and machine learning, 

including dictionary learning [5], matrix factorization [6][7], 

wavelet filterbanks [8], and recently popular deep learning, such 

as CNN [9], Gated Recurrent Neural Networks(GRNN) [10]. 

The general framework for acoustic scene classification 

usually contains two steps. Fist obtain 2D time-frequency repre-

sentation of data, and extracting relevant features. Second em-

ploy these features to achieve classification. And the most com-

monly used in acoustic scene classification is the Mel  Frequency  

Cepstral Coefficients (MFCC) [3] and logMel features [18]. Dif-

ferent from a short-time Fourier transform(STFT), the constant Q 

transformation (CQT) provides a frequency analysis on a log-

scale which makes it more adapted to sound and music represen-

tations, so the spectrum based on the CQT is also used in acous-

tic scene classification [19]. After computing the 2D time-

frequency representation, some methods have investigated many 

features that are typically used in computer vision such as histo-

gram of gradients (HOG) [19] and local binary pattern (LBP) 

[20]. Recently, some researchers have proposed  feature learning, 

and learning features from spectrograms can provide representa-

tions that are adapted to the data while addressing the general 

lack of flexibility of hand-crafted features [6][7]. 

More recently, methods based on Deep Neural Networks 

(DNNs) have achieved good performance for acoustic scene 

classification. In [9], the authors presented a CNNs architecture 

with localized (small) kernels for environmental sound classifica-

tion, and proposed data augmentation to overcome the problem 

of data scarcity. In [21], authors presented a distributed sensor 

server system for acoustic scene classification in urban environ-

ment based on CNNs. To exploit sequential correlation and local 

spectrum-temporal information, some researchers combined the 

long short term memory units (LSTM) and CNNs in parallel as 

lower networks [22]. 

In this paper, we present a new acoustic scene classification 

method. We fuse the multi-scale features to improve performance 

of acoustic scene classification. In order to reduce the number of 

parameters, we use Xception as the foundation network [11], 

which is convolutional neural network entirely based  on depth-

wise separable convolution layers, and the Xception architecture 

is a linear stack of depthwise separable convolution layers with 

residual connections [11]. We modify the Xception architecture, 

via taking the output of  last three blocks, and global pooling the 

output of each block. Then concatenate them together to achieve 

multi-scale feature fusion. The output of each block characterize 

different features, and the deeper blocks have more abstract fea-

tures. Considering that features of each block have effect on the 

acoustic scene  classification, we fuse the output of these block, 

and use multi-scale features to improve classification perfor-

mance. We also introduce the focal loss [13] to further improve 

classification performance. Our method can achieve good results 

on subtask A and subtask B.  

The rest of this paper is organized as follows. Section 2 pre-

sents modified Xception for acoustic scene classification, and 

describe how to perform multi-scale feature fusion. Section 3 
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discusses our experiments and results. Section 4 concludes our 

work. 

2. PROPOSED METHOD 

This section introduces the proposed multi-scale features fusion, 

modified Xception and focal loss of multi-class classification. 

2.1. Multi-scale features 

CNNs have powerful feature extraction capabilities, which real-

izes feature extraction and dimensionality reduction through 

operations such as convolution and pooling. The previous classi-

fication methods only used the last feature map, the feature map 

followed by some fully-connected layers(FC),  the FC not only 

has a large amount of parameters, but also has a large amount of 

calculation. So at present, the most common methods usually 

perform global pooling on the last feature map, and then use the 

softmax layer to achieve classification [12][15].  

In image classification, using the last feature map’s infor-

mation only, can achieve great performance. But in our case, its 

performance is not satisfactory. In the field of object detection, 

some researchers have used multi-scale feature maps to improve 

detection performance[16]. Inspired by this idea, we use multi-

scale features to improve classification performance. The differ-

ent feature maps contain different information, these information 

is helpful for improving the classification performance.  In Fig. 1, 

we illustrated how to fuse the multi-scale features. We use the 

last three feature maps, and perform global pooling on the fea-

tures, then concatenate them for fusion. 
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Figure 1: Illustrate how to fuse the multi-scale features 
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Figure 2: A block of depthwise separable convolution 

2.2. Modified Xception 

Xception is a convolutional neural network architecture entirely 

based on depthwise separable convolution layers[12]. In depth-

wise separable convolution, the convolution operation is split 

into multiple steps, as shown in Fig. 2. To better illustrate the 

depthwise separable convolution, we suppose that is a 3×3 size 

convolutional  layer  with a 16 channels input  and a 32 chann- 

els output. The general convolution uses 32 convolution  kernels 
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Figure 3: Overview of the modified Xception 
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convolving with input data, in which 3×3×16 parameters are 

needed for each convolution kernel. And the output is only one 

channel. Then 32 convolution kernels need a total of (3×3×16) 

×32 = 4068 parameters. 

Depthwise separable convolution is split two steps. First, 

depthwise convolution, which is a spatial convolution performed 

independently over each channel of one input, 16 convolution 

kernels (1 channel) of 3×3 size are convoluted with  16 channels 

input data respectively. Second, pointwise convolution, which is 

a 1x1 (16 channels) convolution, projecting the 32 channels out-

put by the depthwise convolution onto a new channel space. 

These two steps need 3×3×16+(1×1×16) ×32 = 656 parameters, 

which has less amount of parameters than ordinary convolution. 

And depthwise separable convolutions are usually implemented 

without non-linearities activation function. 

A complete description of the specifications of the network 

is given in Fig. 3. The Xception architecture has 36 convolution-

al layers forming the feature extraction base of the network. The 

36 convolutional layers are structured into 14 modules, all of 

which have linear residual connections around them, except for 

the first and last modules. We extract the feature maps of the 

32nd, 34th, and 36th layers, and perform global pooling on fea-

tures maps respectively, then concatenate the outputs of global 

pooling. We fuse the features through FC layer and use softmax 

layer to perform classification. 

2.3. Focal loss  

For multi-class classification task, Cross-Entropy (CE) is gener-

ally used as the loss function: 
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where, p is the model’s estimated probability, y is ground-truth 

class label(one-hot vector), j represents the j -th class. In this 

paper, we use loss function of acoustic scene classification that 

is based on CE: 
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where, iy represents the label of i -th sample. ip represents the 

predicted label of  i -th sample, j represents the j -th class.  

 is a small positive number to prevent the occurrence of 0 in 

the logarithmic function. 

During the training process, we found, some samples are 

hard to recognition. These samples would affect the prediction 

performance of our model. Therefore, we introduce the focal 

loss [13], the original focal loss start from the CE loss for binary 

classification. In this paper, we need a multi-class classification 

loss function, therefore we modify the focal loss. First, we define 

the probability i

tp  that the i -th sample is predicted correctly: 

( ) *
t

i i T ip y p  (3) 

where, ( )i Ty represents the transpose of the i -th sample’s label, 

ip represent the predicted label of  i -th sample, * is vector mul-

tiplication. The finally loss function are as follows: 
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The modified focal loss, can solve the problem of hard recogni-

tion samples, and we only need to select the appropriate hyper 

parameter  . Known by definition of the focal loss, for hard to 

recognize sample, its probability i

tp  is close to 0, and the 

(1 + )i

tp  is large. For easy to recognize sample, its probabil-

ity i

tp  is close to 1, (1 + )i

tp   is small, so it can down-weight 

loss of easy sample and up-weight loss of hard sample. It focus 

training on hard sample. 

3. EXPERIMENTAL 

3.1. Experimental Setting 

We perform experiments on the dataset of DCASE2018 Task1 

Subtask A and Subtask B, which consists of 10 scenes, airport, 

shopping mall, metro station, street pedestrian, public square, 

street traffic, tram, bus, metro and park. We use test set and train 

set divided by DCASE2018 committee.  

Log-scaled mel-spectrogram are used as the input represen-

tation of the network. To compute it, the 2-channel wav of sub-

task A are down mixed to mono, and the wav of subtask B are 

mono. And STFT is applied using Hamming windows of 4096 
samples with 75% overlap. After calculating its power, a mel 

filter bank is applied consisting of 128 bands. Then we use a 

filter bank with triangular filters in the frequency domain pre-

senting a peak value of one. Finally, the resulting mel energy 

values are logarithmically scaled. Resulting log-scaled mel-

spectrograms are normalized to zero mean and unit standard 

deviation for the training set. 

The network training was performed by optimizing the focal 

loss and stochastic gradient descent (SGD) with Nesterov mo-

mentum. In the focal loss, =3  for subtask A, and =1 for sub-

task B,  is the optimal values selected by hyper-parameter 

search. The initial learning rate, and mini-batch size were set to 

0.1, and 128, respectively, and use automatic attenuation of 

learning rate. We train network on dataset for 100 epochs, if the 

performance of the model is improved after training one epoch, 

the weight of the model is saved, if the performance of model is 

not improved after continuous 5 epochs, the learning  rate is 

multiplied by 0.1, and if the performance of model is not im-

proved after continuous 15 epochs, we stop training model. 

3.2. Comparison with baselines 

Our first experiment compares our method to baseline, the base-

line system implements a CNNs based approach, where 40 log 

mel-band energies are first extracted for each 10-second signal, 

and a network consisting of two CNNs layers and one fully con-

nected layer is trained to assign scene labels to the audio signals 

[17]. we perform experiments on development datasets of sub-

task A and subtask B. 

Table 2 presents the results of our proposed method and 

baseline system. Compared with the baseline system, our pro-

posed method achieves a relative improvement of more than 20%, 

on subtask A and subtask B. 
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Table 1: Comparing performances of baseline and our method on 

the subtask A and subtask B. 

Scene 

Accuracy(%) 

Baseline Our method 

Subtask A Subtask B Subtask A Subtask B 

Airport 72.9 73.3 77.3 78.1 

Bus 62.9 59.4 84.4 88.7 

Metro 51.2 43.3 79.3 72.4 

Metro 

station 
55.4 50.4 86.8 87.8 

Park 79.1 78.1 86.9 91.0 

Public 

square 
40.4 36.2 51.2 53.1 

Shopping 

mall 
49.6 48.2 88.7 79.7 

Street, 

pedestrian 
50.0 51.1 76.7 62.9 

Street, 

traffic 
80.5 80.5 91.2 87.5 

Tram 55.1 51.9 75.0 74.6 

Average 59.7 57.2 79.8 77.6 

Table 2: Analyzing the effects of multi-scale features on the sub-

task A and subtask B, w/o means not using multi-scale features, 

and with means using multi-scale features. In this experiment we 

don’t use the focal loss. 

Scene 

Accuracy(%) 

w/o multi-scale features with multi-scale features 

Subtask A Subtask B Subtask A Subtask B 

Airport 78.5 76.4 77.1 77.8 

Bus 88.4 81.7 84.9 89.0 

Metro 74.3 73.7 78.9 71.2 

Metro 

station 
85.7 85.1 87.1 87.8 

Park 88.8 90.7 86.7 91.2 

Public 

square 
53.7 48.0 47.3 49.8 

Shopping 

mall 
72.7 75.6 88.6 79.2 

Street, 

pedestrian 
65.2 63.3 75.4 61.4 

Street, 

traffic 
86.6 86.2 92.3 87.6 

Tram 74.1 73.1 74.2 74.3 

Average 76.8 75.3 79.3 76.9 

3.3. On the effect of multi-scale features 

Our second experiment analyze the effect of multi-scale features 

on performance. In this experiment, we don’t use focal loss, and 

perform it on development datasets of subtask A and subtask B. 

Table 2 presents the results of our proposed method with 

multi-scale features and without multi-scale features.  On subtask 

A, the method with multi-scale features achieves 2.5% relative 

improvement compared with the method without multi-scale 

features, and on subtask B, the improvement is 1.6%. It can been 

seen that fusion of multi-scale features can improve performance. 

3.4. On the effect of focal loss 

Our third experiment analyze the effect of focal loss, In this ex-

periment, we use multi-scale features. And perform this experi-

ment on development datasets of subtask A and subtask B. 

Table 2 presents the results of our proposed method with 

focal loss and without focal loss. The focal loss could solve the 

problem that some samples are difficult to recognize, the method 

with focal loss achieves 0.6% improvement on subtask A, and 

0.7% improvement on subtask B. 

Through these experiments, we can draw conclusions, our 

method can achieve great classification performance on subtask 

A and subtask B. 

Table 3: Analyzing the effects of the focal loss on the subtask A 

and subtask B, w/o means not using focal loss, and with means 

using focal loss. In this experiment, we use multi-scale features. 

Scene 

Accuracy(%) 

w/o focal loss with focal loss 

Subtask A Subtask B Subtask A Subtask B 

Airport 77.1 77.8 77.3 78.1 

Bus 84.9 89.0 84.4 88.7 

Metro 78.9 71.2 79.3 72.4 

Metro 

station 
87.1 87.8 86.8 87.8 

Park 86.7 91.2 86.9 91.0 

Public 

square 
47.3 49.8 51.2 53.1 

Shopping 

mall 
88.6 79.2 88.7 79.7 

Street, 

pedestrian 
75.4 61.4 76.7 62.9 

Street, 

traffic 
92.3 87.6 91.2 87.5 

Tram 74.2 74.3 75.0 74.6 

Average 79.3 76.9 79.8 77.6 

4. CONCLUSION 

In this paper, we propose an acoustic scene classification meth-

od which uses multi-scale features fusion. We use Xception as 

the foundation network, in order to fuse features, we modify the 

Xception. This method can achieve great classification perfor-

mance on subtask A and subtask B. In order to further improve 

performance, we introduce focal loss of multi-class classification. 

Although our method is still satisfactory, its biggest problem is 

the existence of overfitting, and if there are more data to train 

our model, we would get better performance. 
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