
Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR GENERAL-

PURPOSE AUDIO TAGGING

Bogdan Pantic

School of Electrical Engineering

Signals and Systems Department

Belgrade, Serbia

 bogdan.pantic@yahoo.com

ABSTRACT

This work describes our solution for the general-purpose audio

tagging task of DCASE 2018 challenge. We propose the ensemble

of several Convolutional Neural Networks (CNNs) with different

properties. Logistic regression is used as a meta-classifier to pro-

duce final predictions. Experiments demonstrate that the ensem-

ble outperforms each CNN individually. Finally, the proposed

system achieves Mean Average Precision (MAP) score of 0.945

on test set, which is a significant improvement compared to the

baseline.

Index Terms— audio tagging, DCASE 2018, convolutional

neural networks, ensembling

1. INTRODUCTION

The goal of audio tagging is to create models capable of recogniz-

ing a variety of sounds. Those include musical instruments, vehi-

cles, animals, sounds generated by some sort of human activity etc.

The motivation for a research in the field of an artificial sound un-

derstanding can be found in potential applications such as security,

healthcare (hearing impairment), improvements in smart devices,

various music related tasks etc. Detection and Classification of

Acoustic Scenes and Events (DCASE) challenge 2018 consists of

several tasks which provide the way to evaluate different methods

for solving problems related to non-speech audio signals. The fo-

cus of this paper will be on the task 2: “General-purpose audio

tagging of FreeSound content with AudioSet labels” which is

hosted on Kaggle platform [1]. The dataset contains around 9500

training and 1600 testing examples which belong to one of 41 un-

equally distributed classes (bus, gunshot, knock, flute, etc.). Audio

files differ in length with the duration ranging from 300ms to 30s.

All samples were automatically annotated, but only a portion of

training set labels were manually verified. Therefore, there is a

large variation in label quality which poses yet another problem to

participants – to extract as much information as possible from the

weakly labeled data. Another major issue is a label density. It rep-

resents a portion of audio in which the tagged event is actually

present. As one can imagine, the label density can vary signifi-

cantly, so creating models which can successfully tackle that is of

high importance.

 Though the research in this area has recently expanded, a re-

lated work can be found at the previous editions of DCASE chal-

lenge. Alternatively, a related research can also be found in the

area of Music Information Retrieval (MIR). The earlier research

mostly relied on hand crafted features and shallow models. For ex-

ample, in the first edition of DCASE in 2013 models like SVM [2]

and bagging of decision trees [3] were used with the variety of

features. Similar tendency can be found in the MIR research where

features were particularly designed to capture timbral and rhyth-

mic characteristics [4]. The later research shows an obvious shift

towards feature learning, more precisely, deep learning. Following

their success in computer vision, convolutional neural networks

(CNN) are extensively used for the audio scene classification [5,

6], event detection [7, 8], music tagging [9] etc. One can use CNNs

in different settings and on different input representations. Using

raw audio with one-dimensional convolutions is a viable option,

but most research relies on some sort of time-frequency represen-

tation and two-dimensional CNNs as it is typically expressive

enough and less computationally expensive. Mel-spectrograms are

widely used, but Constant Q transform (CQT) also shows promis-

ing results [10]. Although a computer vision inspired the rapid

growth of CNN usage, the interpretation in audio domain funda-

mentally differs. While vertical and horizontal axes in images gen-

erally satisfy the same properties and should be treated equiva-

lently, time and frequency axes of an audio signal represent differ-

ent modalities. Therefore, there is a room for the domain specific

filter design, which should capture interesting patterns, improve

CNN architecture efficiency and hopefully increase model perfor-

mance. Several researchers have already tried to exploit these

facts, yielding competitive results in related areas. Depending on

a problem in question, approaches focus on modelling temporal

[11] and frequency [12] related features with horizontal and verti-

cal filters respectively. Especially interesting for our dataset are

wide architectures that incorporate parallel feature learning [13,

14]. In that setting, one should be able to use many different filter

shapes and fuse extracted features in later layers, which would en-

able the model to learn much richer set of descriptors. Due to the

nature of our problem, mainly, large differences in acoustic prop-

erties of provided classes, parallel architectures could prove to be

beneficial.

 This paper describes our solution for DCASE challenge. We

will evaluate several architectures and preprocessing techniques.

The main goal is to design diverse set of classifiers and leverage

these differences by stacking predictions of individual models. The

paper is organized as follows. Validation, preprocessing, proposed

models and ensembling are described in the section 2. Section 3

deals with the evaluation and details of experimental setup. Fi-

nally, the obtained results are presented in the section 4.

2. SYSTEM ARCHITECTURE

This section provides an overview of the most crucial aspects of

the solution, including validation setup, data preprocessing, CNN

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

architectures and ensembling technique.

2.1. Validation Setup

One of the major decisions during the development of the machine

learning system is a configuration of the train-validation split. It

is common to use K-fold cross-validation, where a model is

trained on K-1 folds and validated on the remaining one. At the

end, the average score is used as a performance estimate. How-

ever, in the case of the provided dataset, there is a large percent of

samples which are not manually verified in the training set and

none of them in the test set. Since validation should represent un-

seen data as close as possible, we choose to use only manually

verified examples. The same split is used for all models, where

10% of the data is used for validation. It is also worth mentioning

that train and validation data have the same distribution of labels,

but the distribution of manually verified samples of different clas-

ses in the training set is not uniform.

2.2. Preprocessing

In the introduction, it is pointed out that audio files have different

length and consequentially don’t contain the same amount of in-

formation. Therefore, the preprocessing should account for both

fixed size input requirement of our models and the information

perseverance. The input audio length is predefined, and it varies

between 4 and 8 seconds for different models while shorter files

are zero padded. The sampling rate is 44.1 kHz. Two representa-

tions are used: mel-spectrogram with 96 mel bands and constant

Q transform with 96 or 110 bands. Longer files are split into

chunks of predefined length with several overlap values and the

resulting spectrograms are converted to dB-scale (the amplitude

is scaled relative to maximum value). Obtained inputs are of shape

(𝑛𝑏𝑎𝑛𝑑𝑠 , 𝑛𝑓𝑟𝑎𝑚𝑒𝑠) and they are all used as new training examples

(which means that the resulting dataset is larger than the initial

one). Finally, the data is standardized (by subtracting the mean

and dividing by the standard deviation of the entire training set).

At the test time, identical transformations are applied and the re-

sults are generated as an average of the predictions of each chunk

corresponding to the same file. The entire preprocessing is done

using Librosa library [15], and the remaining hyper-parameters

are left to the default values.

2.3. Network Architectures

The ensembling is known to yield the highest benefits when pre-

dictions of the base models are less correlated. To fully exploit

that fact, we propose a couple of architectures with slightly differ-

ent properties.

 The first network is inspired by one of the top solutions of

“Tensorflow Speech Recognition challenge” [16] and suggested

by other participant of DCASE challenge [17]. The initial convo-

lutional layer has 64 filters of shape 7x3, followed by 4x1 max-

pooling layer. The next layer contains 128 filters of shape 7x1 and

4x2 max-pooling with 2x2 strides. Finally, two convolutional lay-

ers with 128 filters and 1x5 and 5x1 shapes respectively are

stacked before the global-max-pooling layer. Two densely-con-

nected layers with 64 neurons are used for an additional feature

extraction before a softmax classifier. The activation function of

each layer is rectified linear unit and each convolutional layer is

followed by batch-normalization. Dropout of 0.25 is used before

each dense layer for additional regularization.

 The second architecture is proposed in [13]. It relies heavily

on the domain knowledge, by introducing sets of rectangular fil-

ters applied in parallel on input. On the one hand, for frequency

related features, vertical filters which cover 90% and 40% of do-

main are used with small temporal dimension. On the other hand,

to capture temporal features efficiently, an average pooling is ap-

plied over frequency axis of spectrogram and several 1D convo-

lutional kernels are employed. The filter lengths are 165, 128, 64

and 32. Outputs of both frequency and time related feature extrac-

tors are concatenated. Three 2D convolutional layers with 512 fil-

ters are then applied, the result is flattened and the dense layer

with 300 neurons followed by 0.4 dropout is added before the out-

put layer.

 Additionally, to explore other aspects of rectangular filter de-

sign, a new architecture is proposed. It is inspired by [12] and the

details are given in the table 1:

Table 1: Description of model 3: Set of rectangular filters, con-

catenation of feature maps and additional layers

Conv1: 48x (8x7)| 32x (32x7)| 16x (64x7)| 16x (90x7) + BN

Concatenate

Max-Pooling (5x5)

Conv2: 120x (2x2)

Global-Max-Pooling 2D

Dense1: 64 units + Dropout 0.2

Dense2: 64 units + Dropout 0.2

Dense3: 41 units + softmax

The output of each branch in Conv1 layer has to be the same, so

that feature maps can be stacked. This is achieved by zero-pad-

ding input accordingly. All hidden layers use rectified linear unit

as activation.

 The combination of previously discussed ideas has led to yet

another model:

Table 2: Description of model 4: Set of rectangular filters with

more depth, concatenation of feature maps, additional convo-

lutional and dense layers

Conv1: 64 x (8x3)| 64 x (16x3)| 64 x (32x3)

Max1:Max-Pooling (4x1) + BN

Conv2: 128 x (8x1)| 128 x (16x1)| 128 x (32x1)

Max2: Max-Pooling (4x2) + BN

Concatenate

Conv3: 128 x (5x1) + BN

Conv4: 128 x (1x5) + BN

Global-Max-Pooling 2D

Dense1: 64 units + Dropout 0.2

Dense2: 64 units + Dropout 0.2

Dense3: 41 units + softmax

The fourth model is using architectural designs of the first net-

work, but with the parallelism introduced in the models two and

three. Instead of the single convolutional layer before the concat-

enation, it is using two layers per branch. Same padding is used in

these two layers to avoid a dimensionality mismatch. The strides

of max-pooling layers are 2x1 and 2x2 respectively. Similarly,

hidden layers use ReLU activation.

 Models which are typically used in a computer vision com-

munity can be added to maximize diversity. Concretely, we use

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Inception V3 [18] and MobileNet [19] with weights pretrained on

ImageNet. They are implemented using Keras [20] library. The

classification layer is removed from both architectures and two

layers with 64 units and 0.2 dropout are added before the softmax

layer with 41 units. The additional preprocessing steps are re-

quired for these setups. We had to resize the inputs to 150x150 for

Inception and 160x160 for MobileNet to match implementation

requirements. Also, a number of channels had to be matched, so

mean is calculated across the entire training data and added as the

second and the third channel to each sample. These models re-

quire more computing time, but add a significant value to ensem-

bles. We will refer to Inception as model 5 and MobileNet as

model 6 in the remainder of the paper.

2.4. Ensembling

Once models are configured and trained there are many ways to

leverage generated predictions. Calculating arithmetic or geomet-

ric mean are two obvious ways, since they don’t add additional

complexity and almost always improve performance. However,

once we have a sufficiently diverse set of base predictions, real

gains come with stacking. Stacking is performed by using predic-

tions as features for a meta-model. It is often done in a cross-val-

idation setting, but because of the train-validation split used by

level-1 models, we are constrained to use only 10% of data for

meta-model training. The predictions of the individual classifiers

are stacked in the columns for both the validation and the test set.

For example, each of ten models would have 41 (number of clas-

ses) predictions per example and the resulting feature matrix

would have 410 columns. The validation data then becomes a new

training set and stratified 5-fold cross-validation is used for train-

ing. The experiments have shown that logistic regression is suita-

ble candidate for the meta-classifier. Principal component analy-

sis (PCA) is used for a dimensionality reduction in each of K iter-

ations. The predictions of the meta-model on the validation data

are combined and MAP score is computed to produce a new per-

formance estimate. Finally, trained meta-model is used to gener-

ate test set predictions.

3. EXPERIMENTAL DESIGN

3.1. Evaluation

Organizers split test data in a public and a private part. Partici-

pants submit their predictions for the entire test set, but they can

only see a public score (contains around 19% of test data). Sub-

missions are evaluated using mean average precision:

 𝑀𝐴𝑃 =
1

𝑁
∑ ∑ 𝑃(𝑗)

𝑚𝑖𝑛(𝑛,3)

𝑗=1

𝑁

𝑖=1

(1)

where 𝑁 is a number of audio files used for scoring, 𝑛 is a number

of predictions per file and 𝑃(𝑗) is the precision at cutoff 𝑗. The

private score is released after the competition ends.

3.2. Hyper-parameters and data augmentation

The input is split into patches of length 4s, 5s or 6s with 1s over-

lap, or 8s with 2s overlap. The experiments on shorter inputs gave

worse scores and didn’t add any value to the ensembles, so they

were discarded. The networks were trained using categorical

cross-entropy as a loss function. Adam is used as an optimizer,

with the initial learning rate of 0.001. The mini-batch size was 32

or 64, depending on a model and the input size. During training,

we monitor a validation loss and save currently the best perform-

ing model. If the validation loss doesn’t decrease for seven

epochs, the learning rate is multiplied by 0.5. Early-stopping is

used to avoid overfitting. The training stops after 20 epochs

passed from the last improvement. A maximum number of epochs

for all models is 250.

 Data augmentation is another way to reduce overfitting.

Transformations are applied to the original data points, artificially

enlarging dataset. It’s crucial that augmentation techniques do not

change a true label of the particular sample, otherwise perfor-

mance may decrease. Concretely, we used random width shift and

zoom with maximum range of 0.1. Another interesting augmenta-

tion technique which significantly reduced overfitting is random

erasing [21]. It works by randomly selecting rectangular area on

the input image and changing its values with random numbers.

Finally, the most important augmentation technique used is mixup

[22]. It is implemented by creating virtual feature-target

pairs (�̃�, �̃�):

 �̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (2)

 �̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (3)

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are the pairs drawn randomly (regard-

less of the provided label of the sample) from the training data,

while 𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼). Therefore, the parameter 𝛼 affects a regu-

larization strength (larger 𝛼 implies stronger regularization).

Mixup is encouraging linear behavior between training examples

which has other positive side effects. The original paper shows

that it also improves robustness to corrupted labels. They argue

that by increasing 𝛼 it should be possible to create virtual exam-

ples further from the original, wrongly labeled samples and there-

fore reduce effect of the memorization of the corrupted classes.

As discussed previously, the majority of the training examples

were not manually verified (accuracy of those labels is estimated

to be at least 65-70% per class), so mixup allows us to decrease

negative impact of the label noise with minimal additional com-

putational requirements, since each “new” training example is just

a linear combination of two original samples. These desirable

properties have made mixup a crucial part of every pipeline. Re-

garding the parameter value, 𝛼 between 0.2 and 0.3 was found to

be optimal across different architectures. Every augmentation

technique is performed during the training phase.

4. RESULTS

In this section, the results of the proposed architectures are pre-

sented and discussed. Table 3 summarizes important information

regarding the models and their scores on a test set (public and pri-

vate part combined). For clarity, models are specified only

through ids, with respect to the order of presentation. These par-

ticular combinations of the models and the preprocessing tech-

niques have been chosen based on the estimated performance of

the ensemble on the validation data. Additionally, to avoid the us-

age of too many configurations in the final ensemble, the models

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

which have brought only small improvements haven’t been in-

cluded. We can come up with several interesting conclusions by

inspecting these values. The experiments have shown that CQT

outperforms mel-spectrogram for most models. Nevertheless,

mel-spectrograms have added significant diversity, so they have

been kept for the stacked ensemble. Also, the inputs of length 4s

and 5s seem to be optimal, since they provide nice trade-off be-

tween performance, required computation and the memory usage.

The larger number of bands certainly helps, but it also increases

computation time.

 Organizers provided a baseline model for comparison with

the proposed solutions. Its inputs are log scale mel-spectrograms

with windows of length 0.25s and hop size of 0.125s. The model

contains 3 convolutional layers with filter shapes 7x7, 5x5 and

3x3 respectively before the output softmax layer. Total number of

parameters is around 658.1K. It achieves MAP score of approxi-

mately 0.70 on test set (0.7 on public and 0.69 on private leader-

board).

Table 3: Summary of architectures: Models, length of audio

chunks, overlap used for longer files, input representations,

MAP scores

Id Length Overlap Transform Bands MAP

1 4s 1s Mel-spec 96 0.87

1 5s 1s CQT 110 0.913

1 6s 1s Mel-spec 96 0.878

1 8s 2s CQT 110 0.909

2 4s 1s CQT 96 0.915

2 5s 1s Mel-spec 96 0.889

3 4s 1s CQT 96 0.872

4 4s 1s CQT 96 0.908

5 4s 1s CQT 96 0.895

5 5s 1s CQT 96 0.894

6 4s 1s CQT 110 0.909

Final solution is an ensemble of 11 proposed configurations. The

meta-model is logistic regression with the regularization parame-

ter 𝐶 = 4. It is trained on 120 features, after PCA dimensionality

reduction. The average precision scores per class (taking into ac-

count only top three predictions per example, referred to as

AP@3) are shown in Table 4. Considering high overall perfor-

mance of both low level classifiers and the ensemble, the results

are expected, since most of the classes obtained nearly perfect

scores. However, there are a few exceptions, most notably:

“Squeak”, “Fireworks” and “Scissors”. “Squeak” is a class which

has one of the lowest percentages of the manually verified exam-

ples, which could be a reason for the bad score. “Fireworks” are,

intuitively, often confused with gunshots, which seems natural

and it is something that would be problematic even for a human

listener. Finally, the class “Scissors” has the 2nd smallest number

of samples in the training set and the smallest in the test set. There

are a couple of less problematic classes like “Chime” and “Glock-

enspiel” (often confused), “Gunshot, gunfire” (same as fire-

works), “Bus” and “Telephone”.

 The proposed ensemble achieves MAP of 0.956 on the public

leaderboard, 0.942 on the private leaderboard and 0.945 on the

entire test set, which is an improvement over level-1 models and

the baseline. The final submission ranked 12th among 558 com-

peting teams on the private leaderboard.

5. CONCLUSION

This paper proposes an ensemble of convolutional neural net-

works for the classification of general audio signals. We have in-

troduced several architectures, preprocessing techniques and val-

idation setup in order to get a diverse set of base predictions. Lo-

gistic regression is then used as a meta-model to obtain the final

output. It has been shown that it outperforms individual models

substantially, which demonstrates that original architectures re-

ally provide sufficiently diverse information. Further improve-

ments might be possible by including different non-deep learning

models with hand crafted features, additional data augmentation

or by adding more pre-trained models to the ensemble.

 Table 4: Per-category results: Class, number of samples

and AP@3

Class Samples AP@3

Acoustic guitar 45 0.93

Applause 32 1.0

Bark 28 0.964

Bass drum 28 1.0

Burping, eructation 32 1.0

Bus 25 0.873

Cello 54 0.981

Chime 29 0.896

Clarinet 56 0.988

Computer keyboard 26 0.904

Cough 30 1.0

Cowbell 42 1.0

Double bass 40 0.987

Drawer open, close 29 0.931

Electric piano 32 0.969

Fart 30 0.983

Finger snapping 33 1.0

Fireworks 32 0.76

Flute 55 0.972

Glockenspiel 29 0.868

Gong 37 1.0

Gunshot, gunfire 63 0.889

Harmonica 33 0.955

Hi-hat 39 0.949

Keys jangling 28 0.946

Knock 39 0.957

Laughter 38 0.947

Meow 29 1.0

Microwave oven 29 0.983

Oboe 42 0.96

Saxophone 110 0.958

Scissors 25 0.78

Shatter 29 0.983

Snare drum 34 0.917

Squeak 29 0.672

Tambourine 40 0.95

Tearing 27 0.962

Telephone 48 0.809

Trumpet 37 0.946

Violin, fiddle 108 0.995

Writing 29 0.943

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

6. REFERENCES

[1] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory, J.

Pons, X. Serra, “General-purpose Tagging of Freesound Au-

dio with AudioSet Labels: Task Description, Dataset, and

Baseline,” Submitted to DCASE 2018 workshop, 2018.

[2] J.T. Geiger, B. Schuller, G. Rigoll, “Recognizing acoustic

features with large-scale audio feature extraction and SVM,”

IEEE AASP Challenge on Detection and Classification of

Acoustic Scenes and Events, 2013.

[3] D. Li, J. Tam, D. Toub, “Auditory scene classification using

machine learning techniques,” IEEE AASP Challenge on De-

tection and Classification of Acoustic Scenes and Events,

2013.

[4] G. Tzanetakis, P. Cook, “Musical genre classification of au-

dio signals,” IEEE Transactions on Speech and Audio Pro-

cessing, vol. 10, no. 5, July 2002.

[5] M. Valenti, A. Diment, G. Parascandolo, S. Squartini, T. Vir-

tanen, “DCASE 2016 acoustic scene classification using con-

volutional neural networks,” Detection and Classification of

Acoustic Scenes and Events, 2016.

[6] S. Park, S. Mun, Y. Lee, H. Ko, “Acoustic scene classifica-

tion based on convolutional neural network using double im-

age features,” Detection and Classification of Acoustic

Scenes and Events, 2017.

[7] D. Lee, S. Lee, Y. Han, K. Lee, “Ensemble of convolutional

neural networks for weakly supervised sound event detection

using multiple scale input,“ Detection and Classification of

Acoustic Scenes and Events, 2017.

[8] I. Jeong, S. Lee, Y. Han, K.Lee, “Audio event detection using

multiple-input convolutional neural network,” Detection and

Classification of Acoustic Scenes and Events, 2017.

[9] K. Choi, G. Fazekas, M. Sandler, “Automatic tagging using

deep convolutional neural networks,” International Society of

Music Information Retrieval Conference, 2016.

[10] T. Lidy, A. Schindler, “CQT-based convolutional neural net-

works for audio scene classification and domestic audio tag-

ging,” Detection and Classification of Acoustic Scenes and

Events, 2016.

[11] J. Schluter, S. Bock, “Improved musical onset detection with

convolutional neural networks,” IEEE International Confer-

ence on Acoustic, Speech and Signal Processing, 2014.

[12] E. Fonseca, R. Gong, D. Bogdanov, O. Slizovskaia, E.

Gomez, X. Serra, “Acoustic scene classification by ensem-

bling gradient boosting machine and convolutional neural

networks,” Detection and Classification of Acoustic Scenes

and Events, 2017.

[13] J. Pons, O. Nieto, M. Prockup, E. Schmidt, A. Ehmann, X.

Serra, “End-to-end learning for music audio tagging at scale,”

in Proceedings of International Society for Music Infor-

mation Retrieval Conference, 2018.

[14] A. Schindler, T. Lidy, A. Rauber, “Multi-temporal resolution

convolutional neural networks for the DCASE acoustic scene

classification task,” Detection and Classification of Acoustic

Scenes and Events, 2017.

[15] https://librosa.github.io/librosa/

[16] https://www.kaggle.com/c/tensorflow-speech-recognition-

challenge/discussion/47715

[17] https://www.kaggle.com/c/freesound-audio-tagging/discus-

sion/57051

[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna,

“Rethinking the inception architecture for computer vision,”

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, “Mo-

bileNets: Efficient convolutional neural networks for mobile

vision applications,” arXiv preprint arXiv: 1704.04861,

2017.

[20] https://keras.io/

[21] Z. Zhong, L. Zheng, G. Kang, S. Li, Y. Yang, “Random eras-

ing data augmentation,” arXiv preprint arXiv: 1708.04896,

2017.

[22] H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, “Mixup:

Beyond empirical risk minimization,” International Confer-

ence on Learning Representations, 2018.

https://librosa.github.io/librosa/
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/discussion/47715
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/discussion/47715
https://www.kaggle.com/c/freesound-audio-tagging/discussion/57051
https://www.kaggle.com/c/freesound-audio-tagging/discussion/57051
https://keras.io/

