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ABSTRACT 

 

This work describes our solution for the general-purpose audio 

tagging task of DCASE 2018 challenge. We propose the ensemble 

of several Convolutional Neural Networks (CNNs) with different 

properties. Logistic regression is used as a meta-classifier to pro-

duce final predictions. Experiments demonstrate that the ensem-

ble outperforms each CNN individually. Finally, the proposed 

system achieves Mean Average Precision (MAP) score of 0.945 

on test set, which is a significant improvement compared to the 

baseline. 

Index Terms— audio tagging, DCASE 2018, convolutional 

neural networks, ensembling 

1. INTRODUCTION 

The goal of audio tagging is to create models capable of recogniz-

ing a variety of sounds. Those include musical instruments, vehi-

cles, animals, sounds generated by some sort of human activity etc. 

The motivation for a research in the field of an artificial sound un-

derstanding can be found in potential applications such as security, 

healthcare (hearing impairment), improvements in smart devices, 

various music related tasks etc. Detection and Classification of 

Acoustic Scenes and Events (DCASE) challenge 2018 consists of 

several tasks which provide the way to evaluate different methods 

for solving problems related to non-speech audio signals. The fo-

cus of this paper will be on the task 2: “General-purpose audio 

tagging of FreeSound content with AudioSet labels” which is 

hosted on Kaggle platform [1]. The dataset contains around 9500 

training and 1600 testing examples which belong to one of 41 un-

equally distributed classes (bus, gunshot, knock, flute, etc.). Audio 

files differ in length with the duration ranging from 300ms to 30s. 

All samples were automatically annotated, but only a portion of 

training set labels were manually verified. Therefore, there is a 

large variation in label quality which poses yet another problem to 

participants – to extract as much information as possible from the 

weakly labeled data. Another major issue is a label density. It rep-

resents a portion of audio in which the tagged event is actually 

present. As one can imagine, the label density can vary signifi-

cantly, so creating models which can successfully tackle that is of 

high importance. 

 Though the research in this area has recently expanded, a re-

lated work can be found at the previous editions of DCASE chal-

lenge. Alternatively, a related research can also be found in the 

area of Music Information Retrieval (MIR). The earlier research 

mostly relied on hand crafted features and shallow models. For ex-

ample, in the first edition of DCASE in 2013 models like SVM [2] 

and bagging of decision trees [3] were used with the variety of 

features. Similar tendency can be found in the MIR research where 

features were particularly designed to capture timbral and rhyth-

mic characteristics [4]. The later research shows an obvious shift 

towards feature learning, more precisely, deep learning. Following 

their success in computer vision, convolutional neural networks 

(CNN) are extensively used for the audio scene classification [5, 

6], event detection [7, 8], music tagging [9] etc. One can use CNNs 

in different settings and on different input representations. Using 

raw audio with one-dimensional convolutions is a viable option, 

but most research relies on some sort of time-frequency represen-

tation and two-dimensional CNNs as it is typically expressive 

enough and less computationally expensive. Mel-spectrograms are 

widely used, but Constant Q transform (CQT) also shows promis-

ing results [10]. Although a computer vision inspired the rapid 

growth of CNN usage, the interpretation in audio domain funda-

mentally differs. While vertical and horizontal axes in images gen-

erally satisfy the same properties and should be treated equiva-

lently, time and frequency axes of an audio signal represent differ-

ent modalities. Therefore, there is a room for the domain specific 

filter design, which should capture interesting patterns, improve 

CNN architecture efficiency and hopefully increase model perfor-

mance. Several researchers have already tried to exploit these 

facts, yielding competitive results in related areas. Depending on 

a problem in question, approaches focus on modelling temporal 

[11] and frequency [12] related features with horizontal and verti-

cal filters respectively. Especially interesting for our dataset are 

wide architectures that incorporate parallel feature learning [13, 

14]. In that setting, one should be able to use many different filter 

shapes and fuse extracted features in later layers, which would en-

able the model to learn much richer set of descriptors. Due to the 

nature of our problem, mainly, large differences in acoustic prop-

erties of provided classes, parallel architectures could prove to be 

beneficial. 

 This paper describes our solution for DCASE challenge. We    

will evaluate several architectures and preprocessing techniques. 

The main goal is to design diverse set of classifiers and leverage 

these differences by stacking predictions of individual models. The 

paper is organized as follows. Validation, preprocessing, proposed 

models and ensembling are described in the section 2. Section 3 

deals with the evaluation and details of experimental setup. Fi-

nally, the obtained results are presented in the section 4. 

2. SYSTEM ARCHITECTURE 

This section provides an overview of the most crucial aspects of 

the solution, including validation setup, data preprocessing, CNN 



Detection and Classification of Acoustic Scenes and Events 2018                                                                                       19-20 November 2018, Surrey, UK  

architectures and ensembling technique. 

2.1. Validation Setup 

One of the major decisions during the development of the machine 

learning system is a configuration of the train-validation split. It 

is common to use K-fold cross-validation, where a model is 

trained on K-1 folds and validated on the remaining one. At the 

end, the average score is used as a performance estimate. How-

ever, in the case of the provided dataset, there is a large percent of 

samples which are not manually verified in the training set and 

none of them in the test set. Since validation should represent un-

seen data as close as possible, we choose to use only manually 

verified examples. The same split is used for all models, where 

10% of the data is used for validation. It is also worth mentioning 

that train and validation data have the same distribution of labels, 

but the distribution of manually verified samples of different clas-

ses in the training set is not uniform.  

2.2. Preprocessing 

In the introduction, it is pointed out that audio files have different 

length and consequentially don’t contain the same amount of in-

formation. Therefore, the preprocessing should account for both 

fixed size input requirement of our models and the information 

perseverance. The input audio length is predefined, and it varies 

between 4 and 8 seconds for different models while shorter files 

are zero padded. The sampling rate is 44.1 kHz. Two representa-

tions are used: mel-spectrogram with 96 mel bands and constant 

Q transform with 96 or 110 bands. Longer files are split into 

chunks of predefined length with several overlap values and the 

resulting spectrograms are converted to dB-scale (the amplitude 

is scaled relative to maximum value). Obtained inputs are of shape 

(𝑛𝑏𝑎𝑛𝑑𝑠 , 𝑛𝑓𝑟𝑎𝑚𝑒𝑠) and they are all used as new training examples 

(which means that the resulting dataset is larger than the initial 

one). Finally, the data is standardized (by subtracting the mean 

and dividing by the standard deviation of the entire training set). 

At the test time, identical transformations are applied and the re-

sults are generated as an average of the predictions of each chunk 

corresponding to the same file. The entire preprocessing is done 

using Librosa library [15], and the remaining hyper-parameters 

are left to the default values. 

2.3. Network Architectures 

The ensembling is known to yield the highest benefits when pre-

dictions of the base models are less correlated. To fully exploit 

that fact, we propose a couple of architectures with slightly differ-

ent properties. 

 The first network is inspired by one of the top solutions of 

“Tensorflow Speech Recognition challenge” [16] and suggested 

by other participant of DCASE challenge [17]. The initial convo-

lutional layer has 64 filters of shape 7x3, followed by 4x1 max-

pooling layer. The next layer contains 128 filters of shape 7x1 and 

4x2 max-pooling with 2x2 strides. Finally, two convolutional lay-

ers with 128 filters and 1x5 and 5x1 shapes respectively are 

stacked before the global-max-pooling layer. Two densely-con-

nected layers with 64 neurons are used for an additional feature 

extraction before a softmax classifier. The activation function of 

each layer is rectified linear unit and each convolutional layer is 

followed by batch-normalization.  Dropout of 0.25 is used before 

each dense layer for additional regularization.  

 The second architecture is proposed in [13]. It relies heavily 

on the domain knowledge, by introducing sets of rectangular fil-

ters applied in parallel on input. On the one hand, for frequency 

related features, vertical filters which cover 90% and 40% of do-

main are used with small temporal dimension. On the other hand, 

to capture temporal features efficiently, an average pooling is ap-

plied over frequency axis of spectrogram and several 1D convo-

lutional kernels are employed. The filter lengths are 165, 128, 64 

and 32. Outputs of both frequency and time related feature extrac-

tors are concatenated. Three 2D convolutional layers with 512 fil-

ters are then applied, the result is flattened and the dense layer 

with 300 neurons followed by 0.4 dropout is added before the out-

put layer.  

 Additionally, to explore other aspects of rectangular filter de-

sign, a new architecture is proposed. It is inspired by [12] and the 

details are given in the table 1: 

 

Table 1: Description of model 3: Set of rectangular filters, con-

catenation of feature maps and additional layers  

Conv1: 48x (8x7)| 32x (32x7)| 16x (64x7)| 16x (90x7) + BN 

Concatenate 

Max-Pooling (5x5) 

Conv2: 120x (2x2) 

Global-Max-Pooling 2D 

Dense1: 64 units + Dropout 0.2 

Dense2: 64 units + Dropout 0.2 

Dense3:  41 units + softmax 

 

The output of each branch in Conv1 layer has to be the same, so 

that feature maps can be stacked. This is achieved by zero-pad-

ding input accordingly. All hidden layers use rectified linear unit 

as activation. 

 The combination of previously discussed ideas has led to yet 

another model: 

 

Table 2: Description of model 4: Set of rectangular filters with 

more depth, concatenation of feature maps, additional convo-

lutional and dense layers 

Conv1: 64 x (8x3)| 64 x (16x3)| 64 x (32x3) 

Max1:Max-Pooling (4x1) + BN 

Conv2: 128 x (8x1)| 128 x (16x1)| 128 x (32x1) 

Max2: Max-Pooling (4x2) + BN 

Concatenate 

Conv3: 128 x (5x1) + BN 

Conv4: 128 x (1x5) + BN 

Global-Max-Pooling 2D 

Dense1: 64 units + Dropout 0.2 

Dense2: 64 units + Dropout 0.2 

Dense3:  41 units + softmax 

 

The fourth model is using architectural designs of the first net-

work, but with the parallelism introduced in the models two and 

three. Instead of the single convolutional layer before the concat-

enation, it is using two layers per branch. Same padding is used in 

these two layers to avoid a dimensionality mismatch. The strides 

of max-pooling layers are 2x1 and 2x2 respectively. Similarly, 

hidden layers use ReLU activation. 

 Models which are typically used in a computer vision com-

munity can be added to maximize diversity. Concretely, we use 
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Inception V3 [18] and MobileNet [19] with weights pretrained on 

ImageNet. They are implemented using Keras [20] library. The 

classification layer is removed from both architectures and two 

layers with 64 units and 0.2 dropout are added before the softmax 

layer with 41 units. The additional preprocessing steps are re-

quired for these setups. We had to resize the inputs to 150x150 for 

Inception and 160x160 for MobileNet to match implementation 

requirements. Also, a number of channels had to be matched, so 

mean is calculated across the entire training data and added as the 

second and the third channel to each sample. These models re-

quire more computing time, but add a significant value to ensem-

bles. We will refer to Inception as model 5 and MobileNet as 

model 6 in the remainder of the paper. 

2.4. Ensembling 

Once models are configured and trained there are many ways to 

leverage generated predictions. Calculating arithmetic or geomet-

ric mean are two obvious ways, since they don’t add additional 

complexity and almost always improve performance. However, 

once we have a sufficiently diverse set of base predictions, real 

gains come with stacking. Stacking is performed by using predic-

tions as features for a meta-model. It is often done in a cross-val-

idation setting, but because of the train-validation split used by 

level-1 models, we are constrained to use only 10% of data for 

meta-model training. The predictions of the individual classifiers 

are stacked in the columns for both the validation and the test set. 

For example, each of ten models would have 41 (number of clas-

ses) predictions per example and the resulting feature matrix 

would have 410 columns. The validation data then becomes a new 

training set and stratified 5-fold cross-validation is used for train-

ing. The experiments have shown that logistic regression is suita-

ble candidate for the meta-classifier. Principal component analy-

sis (PCA) is used for a dimensionality reduction in each of K iter-

ations. The predictions of the meta-model on the validation data 

are combined and MAP score is computed to produce a new per-

formance estimate. Finally, trained meta-model is used to gener-

ate test set predictions. 

3. EXPERIMENTAL DESIGN 

3.1. Evaluation 

Organizers split test data in a public and a private part. Partici-

pants submit their predictions for the entire test set, but they can 

only see a public score (contains around 19% of test data). Sub-

missions are evaluated using mean average precision: 

 

 

         𝑀𝐴𝑃 =  
1

𝑁
∑ ∑ 𝑃(𝑗)

𝑚𝑖𝑛(𝑛,3)

𝑗=1

𝑁

𝑖=1

         

 

 

(1) 

where 𝑁 is a number of audio files used for scoring, 𝑛 is a number 

of predictions per file and 𝑃(𝑗) is the precision at cutoff 𝑗. The 

private score is released after the competition ends. 

3.2. Hyper-parameters and data augmentation 

The input is split into patches of length 4s, 5s or 6s with 1s over-

lap, or 8s with 2s overlap. The experiments on shorter inputs gave 

worse scores and didn’t add any value to the ensembles, so they 

were discarded. The networks were trained using categorical 

cross-entropy as a loss function. Adam is used as an optimizer, 

with the initial learning rate of 0.001. The mini-batch size was 32 

or 64, depending on a model and the input size. During training, 

we monitor a validation loss and save currently the best perform-

ing model. If the validation loss doesn’t decrease for seven 

epochs, the learning rate is multiplied by 0.5. Early-stopping is 

used to avoid overfitting. The training stops after 20 epochs 

passed from the last improvement. A maximum number of epochs 

for all models is 250. 

 Data augmentation is another way to reduce overfitting. 

Transformations are applied to the original data points, artificially 

enlarging dataset. It’s crucial that augmentation techniques do not 

change a true label of the particular sample, otherwise perfor-

mance may decrease. Concretely, we used random width shift and 

zoom with maximum range of 0.1. Another interesting augmenta-

tion technique which significantly reduced overfitting is random 

erasing [21]. It works by randomly selecting rectangular area on 

the input image and changing its values with random numbers. 

Finally, the most important augmentation technique used is mixup 

[22]. It is implemented by creating virtual feature-target 

pairs (�̃�, �̃�): 

 

 �̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗  (2) 

 �̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗  (3) 

 

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are the pairs drawn randomly (regard-

less of the provided label of the sample) from the training data, 

while 𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼). Therefore, the parameter 𝛼 affects a regu-

larization strength (larger 𝛼  implies stronger regularization). 

Mixup is encouraging linear behavior between training examples 

which has other positive side effects. The original paper shows 

that it also improves robustness to corrupted labels. They argue 

that by increasing 𝛼 it should be possible to create virtual exam-

ples further from the original, wrongly labeled samples and there-

fore reduce effect of the memorization of the corrupted classes. 

As discussed previously, the majority of the training examples 

were not manually verified (accuracy of those labels is estimated 

to be at least 65-70% per class), so mixup allows us to decrease 

negative impact of the label noise with minimal additional com-

putational requirements, since each “new” training example is just 

a linear combination of two original samples. These desirable 

properties have made mixup a crucial part of every pipeline. Re-

garding the parameter value, 𝛼 between 0.2 and 0.3 was found to 

be optimal across different architectures. Every augmentation 

technique is performed during the training phase. 

4. RESULTS 

In this section, the results of the proposed architectures are pre-

sented and discussed. Table 3 summarizes important information 

regarding the models and their scores on a test set (public and pri-

vate part combined). For clarity, models are specified only 

through ids, with respect to the order of presentation. These par-

ticular combinations of the models and the preprocessing tech-

niques have been chosen based on the estimated performance of 

the ensemble on the validation data. Additionally, to avoid the us-

age of too many configurations in the final ensemble, the models 
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which have brought only small improvements haven’t been in-

cluded. We can come up with several interesting conclusions by 

inspecting these values. The experiments have shown that CQT 

outperforms mel-spectrogram for most models. Nevertheless, 

mel-spectrograms have added significant diversity, so they have 

been kept for the stacked ensemble. Also, the inputs of length 4s 

and 5s seem to be optimal, since they provide nice trade-off be-

tween performance, required computation and the memory usage. 

The larger number of bands certainly helps, but it also increases 

computation time.  

 Organizers provided a baseline model for comparison with 

the proposed solutions. Its inputs are log scale mel-spectrograms 

with windows of length 0.25s and hop size of 0.125s. The model 

contains 3 convolutional layers with filter shapes 7x7, 5x5 and 

3x3 respectively before the output softmax layer. Total number of 

parameters is around 658.1K. It achieves MAP score of approxi-

mately 0.70 on test set (0.7 on public and 0.69 on private leader-

board). 

 

Table 3: Summary of architectures: Models, length of audio 

chunks, overlap used for longer files, input representations, 

MAP scores 

Id Length Overlap Transform  Bands  MAP 

1 4s 1s Mel-spec 96 0.87 

1 5s 1s CQT 110 0.913 

1 6s 1s Mel-spec 96 0.878 

1 8s 2s CQT 110 0.909 

2 4s 1s CQT 96 0.915 

2 5s 1s Mel-spec 96 0.889 

3 4s 1s CQT 96 0.872 

4 4s 1s CQT 96 0.908 

5 4s 1s CQT 96 0.895 

5 5s 1s CQT 96 0.894 

6 4s 1s CQT 110 0.909 

 

  

Final solution is an ensemble of 11 proposed configurations. The 

meta-model is logistic regression with the regularization parame-

ter 𝐶 = 4. It is trained on 120 features, after PCA dimensionality 

reduction. The average precision scores per class (taking into ac-

count only top three predictions per example, referred to as 

AP@3) are shown in Table 4. Considering high overall perfor-

mance of both low level classifiers and the ensemble, the results 

are expected, since most of the classes obtained nearly perfect 

scores. However, there are a few exceptions, most notably: 

“Squeak”, “Fireworks” and “Scissors”. “Squeak” is a class which 

has one of the lowest percentages of the manually verified exam-

ples, which could be a reason for the bad score. “Fireworks” are, 

intuitively, often confused with gunshots, which seems natural 

and it is something that would be problematic even for a human 

listener. Finally, the class “Scissors” has the 2nd smallest number 

of samples in the training set and the smallest in the test set. There 

are a couple of less problematic classes like “Chime” and “Glock-

enspiel” (often confused), “Gunshot, gunfire” (same as fire-

works), “Bus” and “Telephone”. 

 The proposed ensemble achieves MAP of 0.956 on the public 

leaderboard, 0.942 on the private leaderboard and 0.945 on the 

entire test set, which is an improvement over level-1 models and 

the baseline. The final submission ranked 12th among 558 com-

peting teams on the private leaderboard. 

5. CONCLUSION 

This paper proposes an ensemble of convolutional neural net-

works for the classification of general audio signals. We have in-

troduced several architectures, preprocessing techniques and val-

idation setup in order to get a diverse set of base predictions. Lo-

gistic regression is then used as a meta-model to obtain the final 

output. It has been shown that it outperforms individual models 

substantially, which demonstrates that original architectures re-

ally provide sufficiently diverse information. Further improve-

ments might be possible by including different non-deep learning 

models with hand crafted features, additional data augmentation 

or by adding more pre-trained models to the ensemble. 

 

        Table 4: Per-category results: Class, number of samples 

and AP@3 

Class Samples AP@3 

Acoustic guitar 45 0.93 

Applause 32 1.0 

Bark 28 0.964 

Bass drum 28 1.0 

Burping, eructation 32 1.0 

Bus 25 0.873 

Cello 54 0.981 

Chime 29 0.896 

Clarinet 56 0.988 

Computer keyboard 26 0.904 

Cough 30 1.0 

Cowbell 42 1.0 

Double bass 40 0.987 

Drawer open, close 29 0.931 

Electric piano 32 0.969 

Fart 30 0.983 

Finger snapping 33 1.0 

Fireworks 32 0.76 

Flute 55 0.972 

Glockenspiel 29 0.868 

Gong 37 1.0 

Gunshot, gunfire 63 0.889 

Harmonica 33 0.955 

Hi-hat 39 0.949 

Keys jangling 28 0.946 

Knock 39 0.957 

Laughter 38 0.947 

Meow 29 1.0 

Microwave oven 29 0.983 

Oboe 42 0.96 

Saxophone 110 0.958 

Scissors 25 0.78 

Shatter 29 0.983 

Snare drum 34 0.917 

Squeak 29 0.672 

Tambourine 40 0.95 

Tearing 27 0.962 

Telephone 48 0.809 

Trumpet 37 0.946 

Violin, fiddle 108 0.995 

Writing 29 0.943 
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