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ABSTRACT

General-purpose audio tagging is a newly proposed task in DCASE
2018, which can provide insight towards broadly-applicable sound
event classifiers. In this paper, two systems (named as 1D-ConvNet
and 2D-ConvNet in this paper) with small kernel sizes, multiple
functional modules, deeper CNN (convolutional neural networks)
are developed to improve performance in this task. In detail, differ-
ent audio features are used, i.e. raw waveforms are for 1D-ConvNet,
while frequency domain features, such as mfcc, log-mel spectro-
gram, multi-resolution log-mel spectrogram and spectrogram, are
utilized as the 2D-ConvNet input. Using DCASE 2018 Challenge
task 2 dataset to train and evaluate, the best single model with 1D-
ConvNet and 2D-ConvNet are chosen, whose kaggle public leader-
board score are 0.877 and 0.961 respectively. In addition, a better
ensemble rank averaging prediction get a score 0.967 on the public
leaderboard, ranking 5/558, while score 0.942 on the private leader-
board ranking 11/558.

Index Terms— DCASE 2018, Audio tagging, Convolutional
neural networks, 1D-ConvNet, 2D-ConvNet, Model ensemble

1. INTRODUCTION

In recent years, computer vision techniques such as object detec-
tion and segment, are applied in monitoring, surveillance and au-
tonomous driving. In the process of these techniques’ performance
improved from laboratory to applications, development of neural
network architectures played an important role. Along with the ap-
pearance of LeNet [1], Alexnet [2], VGG Net[3], GoogLeNet (In-
ception V1 and following V3, V4) [4, 5, 6], Deep Residual Net
[7], Squeeze-and excitation networks [8], neural networks become
much deeper, together with the ingenious modules such an incep-
tion modules, factorizing convolutions, residual blocks and so on.

Similar to vision, audio also takes lots of unique information,
which can help people recognize their surroundings together with
vision or tactile information. However, corresponding techniques
such as sound event detection and specific sound extraction have
not been brought to general applications.

Sound event detection is a system to automatically detect and
classify emergency sound events. In 1st DCASE challenge (D-
CASE 2013, IEEE AASP Challenge: Detection and Classification
of Acoustic Scenes and Events), sound event detection was first-
ly focused together with audio scene classification [9]. Then in
DCASE 2016 challenge, audio tagging was introduced as a new
task. Audio tagging aims at putting one or several sound events
tags on a sound clip, like “domestic”, “musical instruments”, “ani-
mals”, “human sounds”, “speech”. This task can provide insight to
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broadly-applicable sound event classifiers, with increasing amoun-
t of sound event categories. And it can be applied in areas such
as audio surveillance [10], information retrieval [11], automatic de-
scription of multimedia.

Since 2013, the algorithms on audio tagging and sound event
detection have been mainly shifted from traditional classifier ap-
proaches (mfcc-gmm, HMM: hidden Markov model, NMF: non-
negative matrix factorization, random forests) [9, 12] to deep learn-
ing methods such as DNN [13, 14, 15], CNN [16, 17], RNN [18].

As to audio features, many frequency domain features such as
mfcc (mel-frequency cepstrum coefficients) [15], mel-spectrogram
[13] and spectrogram [19] have been used in similar tasks. More-
over, raw waveform is also applied as the input to classifiers in some
recent work about acoustic scene recognition and speech recogni-
tion [19, 20, 21].

However, there is no universally accepted conclusion about
which neural network and audio feature are best. In this audio tag-
ging task, inspired by the process of neural network evolutions in
computer vision, we applied two deeper convolutional neural net-
works (1D-ConvNet with raw waveforms as input, 2D-ConvNet
with frequency domain features as input) to improve the perfor-
mance. Several techniques which work well in computer vision are
applied effectively in this audio tagging task:

• The neural network architectures are much deeper (1D-
ConvNet 18 layers, 2D-ConvNet 32 layers), with inception
modules, factorizing convolutions, residual blocks applied,
which lead to much better performance;

• For 2D-ConvNet, different frequency domain audio features
are compared with the same model, including mfcc, log-mel
spectrogram, multi-resolution log-mel spectrogram and spec-
trogram;

• Data augmentation methods such as mixup, random erase are
used, which are effective to overcome overfitting;

• Model ensemble techniques are used, predictions of 1D-
ConvNet and 2D-ConvNet are combined with rank averaging
method. More model ensemble techniques like stacking should
be tested in future;

• Training and validation based on DCASE 2018 task 2 dataset
verify the effectiveness of the proposed methods.

The rest of this paper is organized as follows. Section 2 de-
scribes the features, data augmentation methods, architectures and
parameters of these two neural networks. Section 3 shows the ex-
periment setup and performances with DCASE 2018 task2 dataset.
Submissions and conclusions are presented in Section 4.
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2. METHODS

The architectures of two neural networks, 1D-ConvNet and 2D-
ConvNet, are shown in Table. 1 and 2. For 1D-ConvNet, raw wave-
forms with normalization are set as input directly. While for 2D-
ConvNet, the features including mfcc, log-mel spectrogram, multi-
resolution log-mel spectrogram, spectrogram are extracted from
raw waveforms. The output of the neural network is the proba-
bilities of 41 classes, between 0 and 1, with sum as 1. Details about
feature extraction, data augmentation and neural networks are de-
scribed then.

2.1. Features and data augmentation

For 1D-ConvNet, the raw time-domain waveforms are directly used
as input at 44100 Hz. The original data length of train and test sam-
ples are range from 300 ms to 30 s. To get input for 1D-ConvNet,
waveforms of a few seconds are randomly (with random offset) ex-
tracted from the raw waveforms. The length of extracted waveforms
are set as 2s, 3s, 4s, 5s, to compare the performances in this task.
It should be noticed that longer extracted waveforms would lead to
more computationally expensive resources.

For 2D-ConvNet, we study the performances of different fre-
quency domain features. The features selected are mfcc, log-mel
spectrogram, multi-resolution log-mel spectrogram [22] and spec-
trogram. The basic parameters are same: sample frequency 44100
Hz, window size 2048 samples (46.44 ms), hop size 512 samples
(11.61 ms) with pre-fft Hamming window. As it demonstrated
above, same length of waveforms are randomly extracted from raw
data firstly, transformed to T frames. For four different features,
other parameters are list below:

mfcc:
Number of mfccs 40, feature size T × 40.
log-mel spectrogram:
Number of mel filters 128, feature size T × 128.
multi-resolution log-mel spectrogram:
It’s concluded that log mel-band energy extracted in multi-

resolution windows give considerable improvement [22]. We wish
to examine its effect with deeper CNN, so the window sizes are
2048, 8192 and 16384 samples, with feature size T × (128 ∗ 3)
shown as Fig. 1

Figure 1: Example of multi-resolution log-mel spectrogram feature.

spectrogram:
Number of frequency bins is 513, feature size T × 513.
Data augmentation methods such as mixup [23] and random

erasing [24], are applied to the frequency domain features, which
help eliminating overfitting effectively. Preprocessing methods like
silence trim are also examined, which did not show improvement of
performance.

2.2. Neural networks

1D-ConvNet (parameters: 2,099,801)
Input: 44100·t 1D time-domain waveform

conv1d, kernel 80, stride 4, 48
max pool, 4, stride 4[

conv1d, kernel 3, stride 1, 48

conv1d, kernel 3, stride 1, 48

]
× 2

max pool, 4, stride 4[
conv1d, kernel 3, stride 1, 96

conv1d, kernel 3, stride 1, 96

]
× 2

max pool, 4, stride 4[
conv1d, kernel 3, stride 1, 192

conv1d, kernel 3, stride 1, 192

]
× 2

max pool, 4, stride 4[
conv1d, kernel 3, stride 1, 384

conv1d, kernel 3, stride 1, 384

]
× 2

Global average pooling (output: 41)
Softmax

Table 1: Architectures of 1D-ConvNet with time-domain waveform
inputs [21]. [...] × k denotes the k stacked layers. Double layers
in a bracket denotes a residual block [7]. Convolutional layers are
followed with BN and ReLU, which are not shown in the table.

1D-ConvNet takes time-domain waveforms as input, which are
represented as a long 1D vector. The neural network is same as
that in the paper [21], details are shown as Table. 1. For t sec-
onds long waveforms, the input layer is a 44100·t 1D vector. To
build this deep CNN, small kernel sizes are used for convolutional
layers. Basic modules like batch normalization, rectified linear u-
nits are applied following each convolutional layer. Network depth
is very important to get better accuracy. However, with the depth
of network increasing, accuracy can get saturated and degrade. To
construct effective deeper network, residual blocks can help a lot
[7]. In 1D-ConvNet, two convolutional layers in a bracket denotes
a residual block.

2D-ConvNet (parameters: 7,664,969)
Input: 299× 299× 3 frequency-domain features

conv2d, kernel 3× 3, stride 2, 32
conv2d, kernel 3× 3, stride 1, 32
conv2d, kernel 3× 3, stride 1, 64

max pool, 3, stride 2
[inception block A as Fig. 2(a)]× 3
[inception block B as Fig. 2(b)]× 1
[inception block C as Fig. 2(c)]× 3

Global average pooling
Dense 1024 (output: 41)

Softmax

Table 2: Architectures of 2D-ConvNet network for frequency-
domain features. [...] × k denotes the k stacked layers. Details
of inception blocks can be seen in Fig. 2. Convolutional layers are
followed with BN and ReLU, which are not shown in the table.

For 2D-ConvNet, frequency domain audio features are used as
input. As Sec. 2.1 described, the features’ size can be T × 40,
T × 128, T × (128 ∗ 3) or T × 513. Here, T is set as 299, about
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(a) Inception block A.

(b) Inception block B.

(c) Inception block C.

Figure 2: Details of inception blocks.

3.5 s. To match the neural network, features are resized to the shape
(299, 299, 3). The input size is 3 channel, when we accidentally
use 3 channel input, the score increased a lot than that of 1 channel
input. The may because 3 channel neural network has better ability
to represent. As it concluded in [5], inception modules can widen
the network with multiple sizes of kernel in the same layer and fac-
torizing convolutions decrease parameters a lot. They are applied in
2D-ConvNet, played an important role in the improvement of per-
formance. Details are shown in Table. 2.

3. SETUP AND PERFORMANCE EVALUATION

3.1. Dataset and evaluation metric

DCASE 2018 task 2 dataset is used to train and evaluate above two
neural networks. Categories of sound event include musical instru-
ments, human sounds, domestic sounds, animals. Recording sce-
narios and techniques can be very different as sounds are uploaded
by users all around the world. The labeling of the samples is a map-
ping from Freesound tags to AudioSet Ontology categories, which
may not so match with the content of samples [25, 26]. The train set

includes 9473 samples while the number of audio samples per cat-
egory ranges from 94 to 300. 3710 of 9473 annotations of samples
is manually verified while the others are not. The test set includes
9400 samples, with about 1.6k manually-verified annotations with
a similar category distribution, used for evaluating the system.

We tried to do manually-verify to the rest of train set, and used
verified labels to train 2D-ConvNet. However, the score decrease
from above 0.95 to below 0.70, which shows a much worse perfor-
mance. So for the final submissions, the original training labels are
used. When doing the manually verify, we found several tips that
make this task difficult:

• Some categories are really hard to classify even by people, for
example (Chime, Cowbell, Glockenspiel) or (Flute, Clarinet);

• With below 300 samples, some categories can be fully repre-
sentative, e.g. most samples of ‘Laugher’ is a ‘evil’ type in
train set;

• Some samples can be with multi-label.

To evaluate each developed system, predictions should be up-
loaded to kaggle platform and are evaluated with the Mean Aver-
age Precision @ 3 metric. The kaggle platform can give a public
leaderboard score with approximately 19% of the test data (about
300 samples). The final results are based on the rest 81%. We
ever worried about that if public and private test data are indepen-
dent identically distributed, while public test data have about 300
samples of 41 categories. The final leaderboard shows that most
participants’ predictions are overfitting.

3.2. Baseline

The baseline method is provided, giving a sense of performance
possible with the above dataset. The baseline system implements
a CNN classifier, with frames of log-mel spectrogram as input fea-
tures. The window fft size is 25 ms and hop size is 10 ms. The
feature size is (25, 64, 1), following with three convolutional and
pooling layers. Details can be found in the paper [26]. The kaggle
leaderboard score can be 0.704 with 5 epochs, while we trained for
more epochs, it can reach 0.798.

3.3. Parameter setup

The parameters of training with 1D-ConvNet and 2D-ConvNet are
set as below.

For 1D-ConvNet, the loss function is a categorical cross entropy
with predicted values (0∼1) and correct values (0 or 1). Adam is
used as optimizer and the size of a mini-batch is set to 128. The
learning rate is initially set as 1e-3. It decays when the validation
accuracy does not increase for last 3 epochs with factor 0.5, while
the minimum learning rate is 1e-6. Training is stopped early when
validation accuracy has stopped increasing for 10 epochs. The mod-
el weights with highest validation accuracy will be saved for follow-
ing predictions. For the single model, 5-fold cross validation is used
to tune the parameters. 5 prediction files for test set are generated
and used to do model ensemble.

For 2D-ConvNet, the loss function is same as above. Adam is
used as optimizer and the size of a mini-batch is set to 16. The
learning rate is initially set as 1e-3. It decays when the validation
accuracy does not increase for last 4 epochs with a factor 0.5, while
the minimum learning rate is 1e-6. Training is stopped early when
a validation accuracy has stopped increasing for 24 epochs. The
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model weights with hight validation accuracy will be stored for fol-
lowing predictions. For the single model, 7-fold cross validation is
used to tune the parameters. 7 prediction files for test set are gener-
ated and used to do model ensemble.

3.4. Results and discussion

For 1D-ConvNet, 2 s, 3 s, 4 s, 5 s length of waveforms are extracted
randomly as input. The validation accuracy (average of 5-fold CV),
score and early stopping epoch numbers are listed in Table 3. As the
Table shows, length of input affects little while longer waveforms
as train input lead to bit better performances. For the final model
ensemble, ensemble predictions with waveforms of 3 s get a higher
score.

data length val acc LB score stopping epoch
2 s 0.7031 0.870 58
3 s 0.7142 0.873 83
4 s 0.7205 0.869 59
5 s 0.7252 0.877 72

Table 3: Results of 1D-ConvNet with different time length input.

Different audio features are compared preliminarily with the
same neural network, 2D-ConvNet. As shown in Table. 4, mod-
el trained with log-mel spectrogram and multi-resolution log-mel
spectrogram get higher validation accuracy. So we use log-mel
spectrogram as features for the final model ensemble. The high-
est public leaderboard score attained by 2D-ConvNet with log-mel
spectrogram is 0.961, whose private score is 0.938.

feature val acc
mfcc 0.7834

log-mel spectrogram 0.8662
multi-resolution log-mel spectrogram 0.8647

spectrogram 0.7878

Table 4: Results of 2D-ConvNet with different audio features.

Model ensemble is a very effective technique to increase accu-
racy on machine learning tasks. A good ensemble contains high per-
forming models which are less correlated. Model ensemble method-
s include rank ensemble, bagging, boosting and stacking. Ranking
averaging is used with predictions of 1D-ConvNet and 2D-ConvNet
combined with different weighs. For our submissions, the best pri-
vate leaderboard score is 0.942, while the public is 0.967, score on
the whole test set is 0.947. Those scores are attained by submission
2 to challenge, details of ensemble are shown below.

• For submission 2, we took the ensemble of 5 predictions (high-
er validation accuracy) from 7 folds CV with 2D-ConvNet and
3 predictions from 5 folds CV with 1D-ConvNet, with weights
3:3:2:2:2:1:1:1.

With the newly released groundtruth of test set, per-class score
on the whole, private and public test set can be attained as Table. 5.
The accuracy for ‘Scissors’, ‘Telephone’ and ‘Squeak’ are too low,
while overfitting is obvious for the 301 samples of public test set.

category score(whole) score(private) score(public)
Oboe 0.9881 0.9853 1

Bass drum 1 1 1
Saxophone 0.9803 0.9754 1

Chime 0.8736 0.8472 1
Electric piano 0.9063 0.8846 1

Shatter 0.9828 0.9792 1
Bark 0.9821 0.9783 1

Acoustic guitar 0.9667 0.9583 1
Scissors 0.7667 0.7083 1

Double bass 1 1 1
Knock 0.9872 0.9844 1

Telephone 0.7674 0.7564 0.8148
Violin or fiddle 1 1 1

Gunshot or gunfire 0.9259 0.9379 0.8750
Burping or eructation 1 1 1

Clarinet 1 1 1
Computer keyboard 0.9808 0.9762 1

Flute 0.9727 0.9659 1
Cello 0.9815 0.9773 1

Tambourine 0.9833 1 0.9167
Drawer open or close 0.8793 0.8542 1

Snare drum 1 1 1
Fart 1 1 1

Meow 0.9828 0.9792 1
Trumpet 0.9324 0.9500 0.8571

Fireworks 0.8698 0.8782 0.8333
Bus 0.8400 0.8000 1

Keys jangling 0.9107 0.8913 1
Applause 1 1 1

Harmonica 0.9091 0.9074 0.9167
Cough 1 1 1
Gong 0.9730 0.9667 1

Glockenspiel 0.9023 0.8819 1
Tearing 0.9630 0.9545 1
Writing 0.8621 0.8542 0.9000
Squeak 0.5230 0.5069 0.6000

Microwave oven 0.9310 0.9167 1
Laughter 0.9737 0.9677 1

Finger snapping 1 1 1
Hi hat 0.9829 1 0.9048

Cowbell 1 1 1

Table 5: Per-class scores on whole, private and public test set.

4. CONCLUSION

In this paper, inspired by the neural network evolutions in comput-
er vision, we apply two deeper CNN in the DCASE 2018 task 2
- audio tagging. Though these two neural networks (1D-ConvNet
and 2D-ConvNet) are not fine tuned enough till now, they showed
competitive potential in this field. For 2D-ConvNet, with the same
neural networks, log-mel spectrogram performs better as the input.
Data augmentation like mixup, random erase are effective to over-
come overfitting in this task. An easy model ensemble technique,
rank averaging is used, which improved the leaderboard score s-
lightly. More fine tuning and model ensemble techniques like stack-
ing should be applied to get better performance, which can improve
the performance and take these sound techniques to applications.
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effective kernel as a framework of this task.
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