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ABSTRACT

In this paper, we describe our solution for the general-purpose audio
tagging task, which belongs to one of the subtasks in the DCASE
2018 challenge. For the solution, we employed both deep learning
methods and statistic features-based shallow architecture learners.
For single model, different deep convolutional neural network ar-
chitectures are tested with different kinds of input, which ranges
from the raw-signal, log-scaled Mel-spectrograms (log Mel) to Mel
Frequency Cepstral Coefficients (MFCC). For log Mel and MFCC,
the delta and delta-delta information are also used to formulate
three-channel features, while mixup is used for the data augmen-
tation.

Using ResNeXt, our best single convolutional neural network
architecture provides a mAP@3 of 0.967 on the public Kaggle
leaderboard, 0.939 on the private leaderboard. Moreover, to im-
prove the accuracy further, we also propose a meta learning-based
ensemble method. By employing the diversities between different
architectures, the meta learning-based model can provide higher
prediction accuracy and robustness with comparison to the single
model. Our solution achieves a mAP@3 of 0.977 on the public
leaderboard and 0.951 as our best on the private leaderboard, while
the baseline gives a mAP@3 of 0.704.

Index Terms— Audio tagging, convolutional neural networks,
meta-learning, mixup

1. INTRODUCTION

With the increase of smart mobile devices in recent years, huge
amounts of user generated sound recordings are uploaded to the web
every day [1]. Thus, the demand for analyzing these audio signals
is increasing dramatically, for example, audio scene classification
[2], automatic audio tagging [3]. Indeed, audio tagging task, the
problem of predicting the presence or absence of certain acoustic
events in the acoustic scenes, has drawn lots of attention during the
last several years, due to its widely applications.

Historically, audio tagging has been addressed with different
handcrafted features and shallow-architecture classifiers. The clas-
sifiers include: GMMs, HMMs, NMF and SVMs [4, 5, 6, 7]. Since
the developments are rapid in signal processing and machine learn-
ing domains, there is an increasing interest in applying deep learn-
ing approaches for the audio tagging task [8, 9, 10, 11]. However, it
remains challenging and falls short of accuracy and efficiency, and

no reliable automatic general-purpose audio tagging systems exists.
‘We argue that several factors lead to the phenomenon:

(1). Due to the lack of large-scale labeled data, the progress
of audio tagging is far behind the analogous problem in the com-
puter vision field. The audio-based approaches have been under-
explored, and the state-of-the-art audio-based techniques are not
able to achieve the comparable performance to its image/video
counterpart. In fact, audios can sometimes be more descriptive than
videos/images, especially when it comes to the description of an
event.

(2). For the sound data, the number of sound events is huge,
and the data quality is also of great diversity. Thus, it is important
to handle the noisy training data, as the reliability of annotations is
varying.

(3). Both shallow-architecture classifier using handcrafted fea-
tures and deep learning approach should be employed together,
which is under-explored. As demonstrated in many previous stud-
ies, efficient fusion between different models can boost the perfor-
mance dramatically.

In this paper, we aim to build an general-purpose audio tagging
system that can categorize an audio clip [12] as belonging to one
of a set of 41 categories drawn from the AudioSet Ontology [13]
(e.g., applause, bark, bus, animals, etc.). In more detail, our system
has two levels: single deep model in the first level and the meta-
learning in the second level. For single model in the first level, only
convolutional neural networks are investigated, and different net-
work architectures are tested with different kinds of input, which
ranges from the raw-signal, log-scaled Mel-spectrograms (log Mel)
to Mel Frequency Cepstral Coefficients (MFCC). For log Mel and
MFCC, the delta and delta-delta information are also used to formu-
late three-channel features. Inception, ResNet, ResNeXt, Dual Path
Networks (DPNs) are selected as the neural network architectures,
while mixup is used for the data augmentation.

For the second level, to improve the classification further, we
explore the use of meta-learning based method for the component
classifier ensemble. Moreover, we propose to add the hand-crafted
statistic features into the second level. In our experiments, this kind
of ensemble method can provide superior accuracy and robustness.
The paper is organized as follows. Section 2 gives the data augmen-
tation method, while the brief introduction of the employed single
models is presented in section 3. Section 4 describes the proposed
meta-learning method and the brief experimental results.
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2. DATA AUGMENTATION

The disadvantage of small dataset is that the model tends to overfit-
ting. Currently, most publicly available audio tagging datasets have
limited sizes [14]. To overcome this problem, we randomly extract
a snippet of the original audio signal with equal length, 1.5 seconds.
In this paper, we explore the use of mixup data augmentation [15].
In more detail, virtual training examples can be constructed by us-
ing the following formula:

r=axzi+(1—a)xa; (1)

y=axy +(1—a)Xy; 2)
where (x;, y;) and (z;, y;) are two examples randomly selected
from the training batch. « is the mixed ratio. In our experiments,
a € Beta(3,3). It is worthwhile to notice that the training samples
can be either the raw wave signal segments or the time-frequency
representations of the signal segment.

3. SINGLE MODEL

We used three kinds of inputs to train the network: raw wave signal,
log-mel of the audio segment, and MFCC of the audio segment. In
the papers [16, 17], we observed the complementarity of different
features, so different features are used to improve performance. We
select a 1.5s section randomly from the audio and input it into the
network. The selected section is different in each epoch. When we
take raw wave as input. We directly input 1.5 x 44100 = 66150
samples. When we take log-mel or MFCC as input, we extract a
64-dimensional log-mel and MFCC feature with a frame width of
80ms and a frame shift of 10ms, then we calculate the delta and
delta-delta features of log-mel and MFCC with a window size of 9.
Then we concatenate log-mel or MFCC with delta and delta-delta
features to form a 3 x 64 x 150 dimension input [18]. Two different
ways are used to train the model: using ImageNet-based pre-trained
model to initialize the weights, and training the weight from scratch.
For the neural network architectures, 6 different model architectures
are used.

3.1. Xception

Xception [19] is a deep convolutional neural network architec-
ture inspired by Inception, where Inception modules have been re-
placed with depth-wise separable convolutions. In our experiments,
Inception-V3 is employed with the log mel as input.

3.2. ResNet

ResNet makes the network deeper through a residual learning [20].
Instead of expecting each few stacked layers directly fit a desired
underlying mapping, ResNet explicitly let these layers fit a residual
mapping. Formally, denoting the desired underlying mapping as
H (x), the stacked nonlinear layers fit another mapping of F'(x) :=
H(x) — z. The original mapping is recast into F'(z) + x.

3.3. ResNeXt

ResNeXt [21] is a successful improvement based on ResNet. In
more detail, ResNeXt is constructed by repeating a building block
that aggregates a set of transformations with the same topology. Ex-
periments on image classification demonstrate that increasing cardi-
nality is a more effective way of gaining accuracy than going deeper
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or wider, especially when depth and width starts to give diminish-
ing returns for existing models. The cardinality and the width of
bottleneck are chosen as 32 and 4 respectively.

3.4. SE-ResNeXt

By introducing a new architectural unit, which we term the
Squeeze-and-Excitation (SE) block [22], networks could improve
the representational power by explicitly modeling the interdepen-
dencies between the channels of its convolutional features. The SE
block takes into account another relationship besides spatial rela-
tions: the channel relationship. It allows the network to perform
feature recalibration, through which it can learn to use global infor-
mation to selectively emphasize informative features and suppress
less useful ones. We apply the SE block on the ResNeXt, which is
denoted as SE-ResNeXt in Table 1.

3.5. Wave-ResNeXt

To process the raw wave-form, we use a one-dimensional convolu-
tion to simulate a band-pass filter to extract features. Moreover, In
order to obtain more complementary features, we use multi-scale
convolution to the original signal. Just like the multi-scale feature
extraction process we designed in [17], the backend network is re-
placed by the ResNeXt.

3.6. DPN

Residual Network (ResNet) enables feature re-usage while Densely
Convolutional Network (DenseNet) enables new features explo-
ration which are both important for learning good representations.
To enjoy the benefits from both path topologies, Dual Path Net-
work (DPN) [23] shares common features while maintaining the
flexibility to explore new features through dual path architectures.

The detail performances of different single models are given
in Table 1. The number following the network name represents
the number of layers in the network, for example ResNet50 means
ResNet with the configuration of 50 layers. As can be seen from
Table 1, we found ImageNet-based pre-traiend model can improve
the performances, but the generalization error between the train and
test data is increased. Further, the Log-Mel feature can achieve bet-
ter performance than waveform or MFCC generally. Moreover, it is
worthwhile to notice that mixup can boost the performance without
any exception.

4. META LEARNING-BASED ENSEMBLE AND
EXPERIMENTAL RESULTS

It is widely known that ensemble diverse classifiers can improve the
accuracy and robustness for the classification task. However, the en-
semble learning has been under-explored for the audio tagging task.
Previous efforts employ linear regression for the ensemble learning.
Here, unlike previous attempts, we explore the use of stacked gen-
eralization in multiple levels to improve accuracy and robustness in
this multi-class classification problem. The framework is computa-
tional, scalable and it have been tested on multiple machine learning
tasks. Fig. 1 shows the proposed stacking architecture used in our
task, which is composed of two levels. We randomly split the data
into 5 folds in our experiments. For each CNN, we run 5 individual
CNN models for each fold, and one model to predict the probabili-
ties for each sample in the validating set by using the whole training
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Table 1: Performance comparison between different single models
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Figure 1: Meta-features construction using CNNs.

dataset. The predicted probabilities of different classes will be con-
catenated to generate meta-features. For each classifier, the proba-
bilities for 41 classes will be used as the meta-features, which will
be concatenated to generate the new training dataset (as can be seen
in Fig.1), and the meta features will be used as the input for level 2.

In our experiments, the first layers are composed of 5 differ-
ent CNN architectures: ResNeXt using the log mel with mixup,
ResNeXt using the raw wave without mixup; ResNet using the log
mel without mixup, ResNet using the wave with mixup, DPN using
the log mel with mixup (as can be seen from Fig.2).

Except for the deep learning-based meta features, we also em-
ploy the traditional handcrafted features. In more detail, we cal-
culate the max value, min value, variance value, skewness for the
MFCC of the audio signal segment. And the statistical features are
also used as the meta-features.

For level 2, we employ the widely used method gradient tree
boosting machine for the multi-class classification task. The eX-
treme Gradient Boosting method (XGBoost) [24, 25] library, a tree
boosting machine based classification implementation, is selected
as the benchmark. It is because that compared to other approaches
(such as, linear regression, Support Vector Machine, Random For-

Network architecture | Pretraiend Input Data augmentation | Public mAP@3 | Private mAP@3
Wave-ResNext Yes wave - 0.938 0.918
Wave-ResNext No wave - 0.910 0.902

Xception Yes log mel mixup 0.917 0.906
ResNet50 Yes MFCC mixup 0.932 0.914
ResNet50 Yes log mel mixup 0.950 0.932
ResNeXt101 Yes log mel - 0.935 0.924
ResNeXt101 Yes log mel mixup 0.967 0.939
ResNeXt101 No log mel mixup 0.921 0.887
SE-ResNeXt101 Yes log mel - 0.939 0.920
SE-ResNeXt101 Yes log mel mixup 0.950 0.927
DPN68 Yes log mel - 0.939 0.925
DPN68 Yes log mel mixup 0.950 0.922
DPN96 Yes log mel - 0.937 0.926
DPN96 Yes log mel mixup 0.964 0.936
DPN96 No log mel mixup 0.917 0.886
DPN107 Yes log mel mixup 0.957 0.938
©437%41) CNN1 CNNS  Statistical featurcs

(9437%60)

New train data

- XGBoost

New test data

Figure 2: Meta-learning for audio tagging.

est [26]), XGBoost provides better classification performance in our
experiment, and its power has furthermore been validated on several
public machine learning challenges. We use the default hyper pa-
rameters for the XGBoost, and the maximum depth is set to 3 to
prevent overfitting.

Using the proposed meta-learning method, our solution
achieves a mAP@3 of 0.977 on the public leaderboard and 0.951
as our best on the private leaderboard, while the baseline gives a
mAP@3 of 0.70.

5. CONCLUSION

In this article, we proposed an effective meta-learning system em-
ploying both deep learning architectures and statistic features-based
learners to achieve a successful solution for the general-purpose au-
dio tagging task in DCASE 2018. A comparative study of the per-
formance of several well-developed convolutional neural network
architectures with different types of input were conducted to obtain
excellent single models for the subsequent meta-learning. Mixup
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technique was also implemented in the training process which con-
stantly improves the model performance as expected. The XGBoost
approach was applied on a hybrid combination of meta-features in-
cluding deep-learning features and statistical features, which have a
superb classification performance. The final results put us in the first
place on the task public leaderboard with a mAP@3 of 0.977 and
the fourth place on the private leaderboard. In future, we would like
to further evaluate the performance of our method on the Google
AudioSet.
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