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ABSTRACT

This paper investigates the joint localization, detection, and track-
ing of sound events using a convolutional recurrent neural network
(CRNN). We use a CRNN previously proposed for the localization
and detection of stationary sources, and show that the recurrent lay-
ers enable the spatial tracking of moving sources when trained with
dynamic scenes. The tracking performance of the CRNN is com-
pared with a stand-alone tracking method that combines a multi-
source direction of arrival estimator and a particle filter. Their re-
spective performance is evaluated in various acoustic conditions
such as anechoic and reverberant scenarios, stationary and mov-
ing sources at several angular velocities, and with a varying num-
ber of overlapping sources. The results show that the CRNN man-
ages to track multiple sources more consistently than the parametric
method across acoustic scenarios, but at the cost of higher localiza-
tion error.

Index Terms— Multiple object tracking, recurrent neural net-
work, sound event detection, acoustic localization

1. INTRODUCTION

Sound event localization, detection, and tracking (SELDT) is the
combined task of identifying the temporal onset and offset of po-
tentially temporally-overlapping sound events, recognizing their
classes, and tracking their respective spatial trajectory when they
are active. Performing SELDT successfully provides an automatic
description of the acoustic scene that can be employed by machines
to interact naturally with their surroundings. Applications such as
teleconferencing systems and robots can use this information for
tracking the sound event of interest [1–6]. Furthermore, smart cities
and smart homes can use it for audio surveillance [7–9].

The joint localization and detection in static scenes with spa-
tially stationary sources have been studied with different paramet-
ric [5, 8, 10, 11] and deep neural network (DNN) [12] based
methods. However, these methods do not employ any temporal
modeling required for the tracking of moving sources in dynamic
scenes. Recently, we proposed a convolutional recurrent neural net-
work (SELDnet) that was shown to perform significantly better lo-
calization and detection than the only other existing DNN-based
method [12]. SELDnet’s capabilities to localize events in full az-
imuth and elevation under matched and unmatched acoustic condi-
tions, and without relying on features dependent on specific micro-
phone arrays, were studied and presented in [13]. However, all the
existing DNN-based methods including[12, 13] have only studied
static scenes.

On the other hand, stand-alone tracking methods have been
widely studied for both stationary and moving sources based on spa-
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tial information only [14–20], additional spectral information [21,
22], or in conjunction with visual information [23]. Such parametric
methods often require manual tuning of multiple parameters cor-
responding to the scene composition and dynamics, and new sets
of parameters have to be identified manually for different sound
scenes. Furthermore, tracking usually focuses on distinguishing
source trajectories, with no regard to source signal content. In the
case of temporally overlapping trajectories, track identities are as-
signed to individual trajectories, but these identities are not source
dependent and are generally re-used for trajectories from different
sources across the audio recording. A balance between consistent
association and localization determines the tracker’s performance
in most cases. Alternatively, a detect-before-track approach, as in
the proposed SELDnet, circumvents the association problem by first
detecting the active sound events, and then assigning a track to each
detected event. As long as such a system is able to react to time-
varying conditions, with temporally and spatially overlapping sound
events from both stationary and moving sources, it is also able to
detect and track the sound events of interest.

In this work, we study the multi-source tracking capabilities
of a detection and localization system based on our recently pro-
posed SELDnet [13]. To the best of the authors knowledge, this
is the first DNN-based SELDT studies. We show that training the
SELDnet with dynamic scene data results in tracking, in addition
to localization and detection. This tracking ability is enabled by
the recurrent layers of the SELDnet that can model the evolution of
spatial parameters as a sequence prediction task given the sequen-
tial features and their spatial trajectory information. We show that
the recurrent layers are crucial for tracking, and in comparison to
stand-alone trackers they additionally perform detection. Unlike the
parametric tracking methods discussed earlier, the recurrent layer is
a generic tracking method that learns directly from the data with-
out manual tracker-engineering. Finally, we show that the tracking
performance of SELDnet is comparable with stand-alone paramet-
ric tracking methods through evaluation on five datasets, represent-
ing scenarios with stationary and moving sources at different angu-
lar velocities, anechoic and reverberant environments, and different
numbers of overlapping sources. The method and all the studied
datasets are publicly available1.

2. METHOD

The block diagram of SELDnet [13] is illustrated in Figure 1. The
input to SELDnet is a multichannel audio recording, from which a
feature extraction block extracts the phase and magnitude compo-
nents of the spectrogram from each channel. The SELDnet maps
the input spectrogram of T -frames length to two outputs of the
same length – sound event detection, and tracking; together they

1https://github.com/sharathadavanne/seld-net
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Figure 1: Workflows for the parametric tracking and DNN-based
SELDT approaches. The sound class coloring and naming for the
tracking task is only shown here to visualize the concept better.
In practice tracking methods do not produce sound class labels as
shown in Figure 3.

produce the SELDT output. The detection output is the class-wise
probabilities for the C classes in the dataset of dimension T × C,
and is obtained as a multiclass multilabel classification task. The
tracking output is a single direction of arrival (DOA) estimate per
time frame for each sound class C as a multi-output regression task.
Thus, when multiple instances of the same sound class are tempo-
rally overlapping, the SELDnet tracks only one instance or oscil-
late between the multiple instances. The estimated DOA is repre-
sented using 3D Cartesian coordinates of a point on a unit sphere
around the microphone. The overall tracking output is of dimen-
sion T × 3C, where 3C represents the three axes of the 3D Carte-
sian coordinates of a DOA for each class in C. Finally, to obtain the
SELDT results, the class-wise probabilities of the detection output
are binarized with a threshold of 0.5, anything greater represents
the presence of the sound class and smaller represents the absence.
The presence of a sound class in consecutive frames gives the onset
and offset times, and the corresponding frame-wise DOA estimates
from the tracking output when the sound class is active gives the
DOA trajectory.

The SELDnet architecture used in this paper is identical to [13],
with three convolutional layers of 64 filters each, followed by two-
layers of 128-node gated recurrent units. The convolutional layers
in the SELDnet are used as a feature extractor to produce robust fea-
tures for detection and tracking. The recurrent layers are employed
to model the temporal structure and the trajectory of the sound
events. The output of the recurrent layers is shared between two
branches of dense layers each with 128 units producing the detec-
tion and tracking estimates. The training and inference procedures
of SELDnet are similar to [13] and is identical for both static and
dynamic scenes, i.e., the same SELDnet designed for static scenes
performs tracking when trained with moving scene data.

The recurrent layers utilize the current input frame along with
the information learned from the previous input frames to produce
the output for the current frame. This process is similar to a particle
filter, which is a popular stand-alone parametric tracker and is also
used as a baseline in this paper (see Section 3.3). The particle filter
prediction at the current time frame is influenced by both the knowl-
edge accumulated from the previous time frames and the input at the
current time frame. For the tracking task of this paper, the particle
filter requires the specific knowledge of the sound scene such as the
spatial distribution of sound events, their respective velocity ranges

Table 1: Summary of Datasets
Sources Sound scene Impulse response Acronym

Stationary [13]
Anechoic Synthetic ANSYN

Reverberant RESYN
Real-life REAL

Moving Anechoic Synthetic MANSYN
Reverberant Real-life MREAL

when active, and their probability of birth and death. Such concepts
are not explicitly modeled in the recurrent layers used in SELD-
net, rather they learn equivalent information directly from the input
convolutional layer features and corresponding target outputs in the
development dataset. In fact, recurrent layers have been shown to
work as generic trackers [24] that can learn temporal associations of
the target source from any sequential input features. Unlike the par-
ticle filters that only work with conceptual representations such as
frame-wise multiple DOAs for tracking, the recurrent layers work
seamlessly with both conceptual and latent representations such as
convolutional layer features.

Finally, by training the recurrent layers in SELDnet using the
loss calculated from both detection and tracking, the recurrent lay-
ers learn associations between DOAs from neighboring frames cor-
responding to the same sound class and hence produce the SELDT
results. In general, unlike the parametric trackers, the recurrent lay-
ers perform similar tracking of the frame-wise DOAs in addition to
also detecting their corresponding sound classes. Further, the re-
current layers do not need complicated problem-specific tracker- or
feature-engineering that are required by the parametric trackers. A
more theoretical relationship between recurrent layers and particle
filter is presented in [25].

3. EVALUATION PROCEDURE

3.1. Datasets
The performance of SELDnet is evaluated on five datasets that are
summarized in Table 1. We continue to use the stationary source
datasets: ANSYN, RESYN and REAL from our previous work [13]
to evaluate the tracking performance of the parametric tracker that
was missing in [13], and compare with SELDnet. The recordings
in ANSYN and RESYN are synthesized in anechoic and reverber-
ant environments respectively. The recordings in REAL are syn-
thesized by convolving isolated real-life sound events with real-life
impulse responses collected at different spatial locations within a
room. Further, we create moving-source versions of the ANSYN
and REAL datasets, hereafter referred as MANYSYN and MREAL,
to evaluate the performance on moving sources. The recordings of
all datasets are 30 seconds long and captured in the four-channel
first-order Ambisonics format [26]. Each dataset has three subsets
with no temporally overlapping sources O1, maximum two O2, and
maximum three temporally overlapping sources O3. Each of these
subsets has three cross-validation splits consisting of 240 recordings
for development and 60 for evaluation. All the synthetic impulse
response datasets (ANSYN, RESYN and MANYSN) have sound
events from 11 classes and DOAs with full azimuth range and ele-
vation range ∈ [−60, 60). The real-life impulse response datasets
(REAL and MREAL) have 8 sound event classes and DOAs in full
azimuth range and elevation range ∈ [−40, 40). During the synthe-
sis of stationary source datasets, all the sound events are placed in a
spatial grid of 10◦ resolution for both azimuth and elevation angles.
We refer the readers to [13] for more details on these datasets.

The anechoic moving source dataset MANSYN has the same
sound event classes as ANSYN and is synthesized as follows. Ev-
ery event is assigned a spatial trajectory on an arc with a constant
distance from the microphone (in the range 1-10 m) and moving
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with a constant angular velocity for its duration. Due to the choice
of the ambisonic spatial recording format, the steering vectors for
a plane wave source or point source in the far field are frequency-
independent. Hence, there is no need for a time-variant convolution
or impulse response interpolation scheme as the source is moving;
the spatial encoding of the monophonic signal was done sample-
by-sample using instantaneous ambisonic encoding vectors for the
respective DOA of the moving source. The synthesized trajectories
in MANSYN vary in both azimuth and elevation, and are simulated
to have a constant angular velocity in the range ∈ [−90◦, 90◦]/s
with 10◦/s steps. Similarly, the MREAL dataset was synthesized
with real-life impulse responses from [13] that were sampled at 1◦

resolution along azimuth only. Hence, unlike MANSYN, the sound
events in MREAL (that are identical to REAL) have motion only
along the azimuth with a constant angular velocity in the range
∈ [−90◦, 90◦]/s and 10◦/s steps.

3.2. Metrics
The evaluation of the SELDT performance is done using individual
metrics for detection and tracking identical to [13]. As the detection
metric, we use the F-score and error rate calculated in segments of
one-second with no overlap [27]. An ideal detection method will
have an F-score of one and an error rate of zero. As the tracking
metric, we use two frame-wise metrics: the frame recall and DOA
error. The frame recall gives the percentage of frames in which
the number of predicted DOAs is equal to the reference. The DOA
error is calculated as the angle in degrees between the predicted and
reference DOA. In order to associate multiple estimated DOAs with
the reference, we use the Hungarian algorithm [28] to identify the
smallest mean angular distance and use it as DOA error. An ideal
tracking method has a frame recall of one and DOA error of zero
(see [13] for more details).

3.3. Baseline Method
In the absence of publicly available implementations of multiple
moving sound sources trackers, we use a combination of MU-
SIC [29] and an RBMCDA particle filter [30] to obtain tracking
results in a similar fashion as in [15] and further made it pub-
licly available 2. The workflow of the baseline method is shown
in Figure 1. MUSIC is a widely used [13, 31] subspace-based high-
resolution DOA estimation method that can detect multiple narrow-
band sources. It relies on an eigendecomposition of the narrowband
spatial covariance matrix computed from the multichannel spectro-
gram, and it additionally requires a source number estimate in or-
der to distinguish between a signal and noise subspace. Herein,
the number of active sources is taken from the reference of the
dataset. To obtain broadband DOA estimates, the narrowband co-
variance matrices are averaged across three consecutive frames and
frequency bins from 50 Hz to 8 kHz. We perform 2D spherical
peak-finding on the resulting MUSIC pseudospectrum generated on
a 2D angular grid with a 10◦ resolution for stationary and 1◦ for
moving sources, in both azimuth and elevation. The final output
of MUSIC MUSGT is a list of frame-wise DOAs corresponding
to the highest peaks equal to the number of active sources in each
frame.

The second stage of the parametric method involves a particle
filter that produces tracking results by processing the frame-wise
DOA information of MUSIC MUSGT . The particle filter assumes
that the number of sources at each time frame is unknown and tracks

2https://github.com/sharathadavanne/multiple-target-tracking
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Figure 2: Visualization of the SELDnet predictions and its re-
spective reference for a MANSYN O2 dataset recording. The
horizontal-axis of all sub-plots represents the same time frames.
The vertical-axis represents sound event class indices for the de-
tection subplots, and DOA azimuth and elevation angles in degrees
for remaining subplots.

them with respect to time using a fixed number of particles. At each
time frame, the particle filter receives multiple DOAs and, based on
knowledge accumulated from the previous time frames, it assigns
each new DOA to one of the existing trajectories, clutter (noise),
or a newborn source. Additionally, it also decides if any of the ex-
isting trajectories have died. The final output of the particle filter
MUSPF

GT produces the temporal onset-offset and the DOA trajec-
tory for each of the active sound events. We refer the reader to [30]
for the details of this approach.

3.4. Experiments
In all our experiments, the baseline particle filter parameters and the
sequence length of input spectrogram for SELDnet was tuned using
the development set of the respective subset. The performance of
the tuned method was tested on the evaluation set of the subset,
and the respective metrics averaged across the three cross-validation
splits of the subset are reported.

Unlike the DNN-based method, the parametric method requires
additional information on the number of active sources per frame to
estimate the corresponding DOAs. However, SELDnet obtains this
information from the data itself. In order to have a fair comparison,
we used the minimum description length (MDL) [32] principle to
estimate the number of sources from the input spectrogram and use
it with MUSIC, resulting in the MUSIC output of MUSMDL and
the corresponding particle filter output of MUSPF

MDL.
Finally, we studied the importance of recurrent layers for the

SELDT task by removing them from SELDnet and evaluating the
model containing only convolutional and dense layers, referred to
as CNN hereafter. The best CNN architecture across datasets had
five convolutional layers with 64 filters each.

4. RESULTS AND DISCUSSION

On tuning the input sequence length for SELDnet, it was observed
that a sequence of 256 frames gave the best scores for the reverber-
ant datasets, and 512 frames gave the best scores for the anechoic
datasets. The SELDnet predictions and the corresponding refer-
ences are visualized in Figure 2 for a respective 1000 frame test
sequence from MANSYN O2 dataset. Each sound class is repre-
sented with a unique color across subplots. We see that the detected
sound events are accurate in comparison to reference. The DOA
predictions are seen to vary around the reference trajectory with a
small deviation. This shows that SELDnet can successfully track
and recognize multiple overlapping and moving sources.

Figure 3 visualizes the tracking predictions and their respective
references for SELDnet and the baseline method MUSPF

GT . In gen-
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Table 2: Evaluation results on different datasets. Since the number of active sources information is used in MUSGT, the frame recall is always
100% and hence not reported. DE: DOA error, FR: Frame recall, F: F-score, SCOF: Same class overlapping frames

ANSYN RESYN REAL MANSYN MREAL
Tracking results O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3
MUSGT DE 1.3 5.0 12.2 21.7 28.9 32.5 15.1 33.9 44.1 0.6 14.8 28.0 16.4 34.1 43.9
MUSPF

GT DE 0.1 1.1 2.3 4.0 5.2 6.1 3.3 8.8 12.0 0.2 4.2 8.0 3.6 8.1 11.9
FR 97.0 88.5 74.3 83.8 55.6 37.3 93.0 71.0 44.7 98.7 92.3 75.1 91.0 69.9 48.3

Methods estimating the number of active sources directly from input data
MUSMDL DE 0.5 14.2 24.0 22.3 31.9 38.5 25.3 36.2 44.1 4.2 17.8 28.5 26.5 35.9 44.9

FR 93.9 89.4 86.7 61.7 45.6 52.5 53.6 35.7 57.5 63.8 48.1 51.85 53.4 35.2 58.9
MUSPF

MDL DE 0.1 4.4 7.2 6.4 10.6 12.7 9.3 10.9 13.7 3.5 6.8 8.0 13.6 11.2 13.6
FR 96.3 83.5 67.7 52.0 34.1 24.2 52.7 40.1 29.6 64 49.9 39.8 58.7 34.4 27.5

CNN DE 25.7 25.2 26.9 39.1 35.1 31.4 32.0 34.9 37.1 26.1 25.8 28.2 36.6 39.3 40.2
FR 80.2 45.6 32.2 69.5 45.8 29.7 45.1 28.4 16.9 83.7 58.1 38.3 44.5 26.2 16.3

SELDnet DE 3.4 13.8 17.3 9.2 20.2 26.0 26.6 33.7 36.1 6.0 12.3 18.6 36.5 39.6 38.5
FR 99.4 85.6 70.2 95.8 74.9 56.4 64.9 41.5 24.6 98.5 94.6 80.7 69.6 42.8 28.9

Detection results
CNN ER 0.52 0.46 0.51 0.44 0.45 0.54 0.52 0.51 0.51 0.59 0.47 0.48 0.46 0.49 0.52

F 70.1 66.5 68 57 54.9 42.7 50.1 49.5 48.9 65.6 62.7 60.1 55.4 50.9 48.8
SELDnet ER 0.04 0.16 0.19 0.1 0.29 0.32 0.4 0.49 0.53 0.07 0.1 0.2 0.37 0.45 0.49

F 97.7 89 85.6 92.5 79.6 76.5 60.3 53.1 51.1 95.3 93.2 87.4 64.4 56.4 52.3
SCOF (in %) 0.0 4.2 12.1 0.0 4.2 12.1 0.0 7.6 23.0 0.0 3.0 9.1 0.0 7.1 20.9

eral, the performance of the two methods is visually comparable.
Both methods are often confused in similar situations, for example
in the intervals of 4-5 s, 10-13 s, and 23-25 s.

The SELDnet, by design, is restricted to recognize just one
DOA for a given sound class. But in real life, there can be mul-
tiple instances of the same sound class occurring simultaneously.
This is also seen in the datasets studied, the last row (SCOF) in the
Table 2 presents the percentage of frames in which the same class
is overlapping with itself. In comparison, the parametric method
has no such restriction by design and can potentially perform bet-
ter than SELDnet in these frames (even though, highly correlated
sound events coming from different DOAs can easily degrade the
performance of parametric methods such as MUSIC). The perfor-
mance of the two methods in such a scenario can be observed in the
10-13 s interval of Figure 3. The SELDnet tracks only one of the
two sources, while the parametric method tracks both overlapping
sources and introduces an additional false track between the two
trajectories.

Table 2 presents the quantitative results of the studied meth-
ods. The general trend is as follows. The higher the number of
overlapping sources, the lower the tracking performance by both
SELDnet and the parametric method. Across datasets, the DOA
error improves considerably with the use of the temporal parti-
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Figure 3: The tracking results of the two proposed methods are visu-
alized for a MANSYN O2 dataset recording. The top figure shows
the input spectrogram. The center and bottom figures show the out-
put of SELDnet and MUSPF

GT tracker in red, and the groundtruth in
green. The blue crosses in the bottom figure represents the frame-
wise DOA output of MUSIC

cle filter tracker, but at the cost of lower frame recall. By us-
ing MDL instead of reference information for the source num-
ber, the overall performance of the parametric approach reduces
(MUSPF

GT > MUSPF
MDL). This reduction is especially observed

in the frame recall metric, that drops significantly for reverberant
and moving source scenario datasets, indicating the need for more
robust source detection and counting schemes.

The frame recall of SELDnet is observed to be consistently
better than MUSPF

MDL, but the DOA estimation is poorer across
datasets. A similar relationship is observed between SELDnet and
MUSPF

GT for all the datasets generated with simulated impulse re-
sponses, while for the real-life impulse response datasets the frame
recall of SELDnet is poorer than MUSPF

GT . That could indicate
the need for more extensive learning for real-life impulse response
datasets, with larger datasets and stronger models.

Using recurrent layers definitely helps the SELDT task. It was
observed from visualizations that the tracking performance by the
CNN was poor, with spurious and high variance DOA tracks, thus
resulting in poor DOA error across datasets as seen in Table 2. This
suggests that the recurrent layers are crucial for SELDT task and
perform a similar task as an RBMCDA particle filter of identifying
the relevant frame-wise DOAs and associating these DOAs corre-
sponding to the same sound class across time frames.

5. CONCLUSION

In this paper, we presented the first deep neural network based
method, SELDnet, for the combined tasks of detecting the temporal
onset and offset time for each sound event in a dynamic acoustic
scene, localizing them in space and tracking their position when
active, and finally recognizing the sound event class. The SELD-
net performance was evaluated on five different datasets containing
stationary and moving sources, anechoic and reverberant scenarios,
and a different number of overlapping sources. It was shown that
the recurrent layers employed by the SELDnet were crucial for the
tracking performance. Further, the tracking performance of SELD-
net was compared against a stand-alone parametric method based
on multiple signal classification and particle filter. In general, the
SELDnet tracking performance was comparable to the parametric
method and achieved a higher frame recall for tracking but at a
higher angular error.

23



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

6. REFERENCES

[1] R. Takeda and K. Komatani, “Sound source localization based
on deep neural networks with directional activate function ex-
ploiting phase information,” in IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2016.

[2] ——, “Discriminative multiple sound source localization
based on deep neural networks using independent location
model,” in IEEE Spoken Language Technology Workshop
(SLT), 2016.

[3] N. Yalta, K. Nakadai, and T. Ogata, “Sound source localiza-
tion using deep learning models,” in Journal of Robotics and
Mechatronics, vol. 29, no. 1, 2017.

[4] W. He, P. Motlicek, and J.-M. Odobez, “Deep neural networks
for multiple speaker detection and localization,” in Int. Conf.
on Robotics and Automation (ICRA), 2018.

[5] T. Butko, F. G. Pla, C. Segura, C. Nadeu, and J. Hernando,
“Two-source acoustic event detection and localization: Online
implementation in a smart-room,” in European Signal Pro-
cessing Conference (EUSIPCO), 2011.

[6] P. Swietojanski, A. Ghoshal, and S. Renals, “Convolutional
neural networks for distant speech recognition,” in IEEE Sig-
nal Processing Letters, vol. 21, 2014.

[7] M. Crocco, M. Cristani, A. Trucco, and V. Murino, “Audio
surveillance: A systematic review,” in ACM Computing Sur-
veys (CSUR), 2016.

[8] C. Grobler, C. Kruger, B. Silva, and G. Hancke, “Sound based
localization and identification in industrial environments,” in
IEEE Industrial Electronics Society (IECON), 2017.

[9] P. W. Wessels, J. V. Sande, and F. V. der Eerden, “Detection
and localization of impulsive sound events for environmental
noise assessment,” in The Journal of the Acoustical Society of
America 141, vol. 141, no. 5, 2017.

[10] R. Chakraborty and C. Nadeu, “Sound-model-based acoustic
source localization using distributed microphone arrays,” in
IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2014.

[11] K. Lopatka, J. Kotus, and A. Czyzewsk, “Detection, classifi-
cation and localization of acoustic events in the presence of
background noise for acoustic surveillance of hazardous situ-
ations,” Multimedia Tools and Applications Journal, vol. 75,
no. 17, 2016.

[12] T. Hirvonen, “Classification of spatial audio location and con-
tent using convolutional neural networks,” in Audio Engineer-
ing Society Convention 138, 2015.

[13] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Sound
event localization and detection of overlapping sources using
convolutional recurrent neural networks,” in IEEE Journal of
Selected Topics in Signal Processing, vol. 13, no. 1, 2018.

[14] I. Potamitis, H. Chen, and G. Tremoulis, “Tracking of Mul-
tiple Moving Speakers With Multiple Microphone Arrays,”
IEEE Transactions on Speech and Audio Processing, vol. 12,
no. 5, pp. 520–529, 2004.

[15] J. M. Valin, F. Michaud, and J. Rouat, “Robust localiza-
tion and tracking of simultaneous moving sound sources us-
ing beamforming and particle filtering,” Robotics and Au-
tonomous Systems, vol. 55, no. 3, pp. 216–228, 2007.

[16] N. Roman and D. Wang, “Binaural tracking of multiple mov-
ing sources,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 16, no. 4, pp. 728–739, 2008.

[17] X. Zhong and J. R. Hopgood, “Time-frequency mask-
ing based multiple acoustic sources tracking applying Rao-
Blackwellised Monte Carlo data association,” in IEEE Work-
shop on Statistical Signal Processing (SSP), 2009.

[18] M. F. Fallon and S. J. Godsill, “Acoustic source localization
and tracking of a time-varying number of speakers,” IEEE
Transactions on Audio, Speech and Language Processing,
vol. 20, no. 4, pp. 1409–1415, 2012.

[19] J. Traa and P. Smaragdis, “Multiple speaker tracking with the
Factorial von Mises-Fisher Filter,” in IEEE Int. Workshop on
Machine Learning for Signal Processing (MLSP), 2014.

[20] O. Schwartz and S. Gannot, “Speaker tracking using recur-
sive EM algorithms,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 22, no. 2, pp. 392–402, 2014.

[21] J. Nix and V. Hohmann, “Combined estimation of spectral en-
velopes and sound source direction of concurrent voices by
multidimensional statistical filtering,” IEEE Transactions on
Audio, Speech and Language Processing, vol. 15, no. 3, pp.
995–1008, 2007.

[22] J. Woodruff and D. Wang, “Binaural detection, localization,
and segregation in reverberant environments based on joint
pitch and azimuth cues,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 21, no. 4, pp. 806–815, 2013.

[23] N. Strobel, S. Spors, and R. Rabenstein, “Joint Audio-Video
Signal Processing for Object Localization and Tracking,” in
Microphone Arrays. Springer, 2001, pp. 203–225.

[24] J. Gu, X. Yang, S. De Mello, and J. Kautz, “Dynamic facial
analysis: From bayesian filtering to recurrent neural network,”
in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[25] Y. J. Choe, J. Shin, and N. Spencer, “Probabilistic interpre-
tations of recurrent neural networks,” Probabilistic Graphical
Models, 2017.

[26] V. Pulkki, A. Politis, M.-V. Laitinen, J. Vilkamo, and J. Aho-
nen, “First-order directional audio coding (DirAC),” in Para-
metric Time-Frequency Domain Spatial Audio. John Wiley
& Sons, 2017, pp. 89–140.

[27] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for poly-
phonic sound event detection,” in Applied Sciences, vol. 6,
no. 6, 2016.

[28] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” in Naval Research Logistics Quarterly, no. 2, 1955, p.
8397.

[29] R. O. Schmidt, “Multiple emitter location and signal parame-
ter estimation,” in IEEE Transactions on Antennas and Prop-
agation, vol. 34, no. 3, 1986.
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