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ABSTRACT
In this paper, we present the details of our proposed framework and
solution for the DCASE 2019 Task 1A - Acoustic Scene Classi-
fication challenge. We describe the audio pre-processing, feature
extraction steps and the time-frequency (TF) representations em-
ployed for acoustic scene classification using binaural recordings.
We propose two distinct and light-weight architectures of convolu-
tional neural networks (CNNs) for processing the extracted audio
features and classification. The performance of both these archi-
tectures are compared in terms of classification accuracy as well as
model complexity. Using an ensemble of the predictions from the
subset of models based on the above CNNs, we achieved an average
classification accuracy of 79.35% on the test split of the develop-
ment dataset for this task. In the Kaggle’s private leaderboard, our
solution was ranked 4th with a system score of 83.16% — an im-
provement of ≈ 20% over the baseline system.

Index Terms— DCASE 2019, acoustic scene classification,
convolutional neural networks, binaural signals, mixup.

1. INTRODUCTION

Humans perceive their surroundings primarily through the visual
and audio cues presented to their eyes and ears, respectively.
Though visual stimuli provide a substantial amount of information
regarding the scene, it is inarguable that audio cues also play a vital
role in determining the type of the environment we are immersed
in. For example, an immersive experience through virtual reality
(VR) is deemed satisfactory only when the associated audio aligns
with the visual scene. In a simpler scenario, a person standing near
a beach with eyes closed can easily infer that they are near the shore
from the repetitive sound pattern of the waves crashing on the rocks
or from the sound of the seagulls. It is easy to conclude that acoustic
characteristics of certain environments have their own unique sig-
nature, which aids humans in distinguishing an audio scene from
another.

The objective of acoustic scene classification is to empower a
machine to automatically recognize the audio scene from the audio
signals they are provided with. Such “machine listening” tasks fall
under the broader umbrella of computational auditory scene analy-
sis (CASA) [1, 2]. Over the past few years, advancement of deep
learning algorithms along with availability of large datasets and in-
crease in computational power has helped to further push the per-
formance of such machine listening systems.

The Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge, has played a major role in providing common
datasets for development, setting algorithmic benchmarks and fur-
thering the research in deep learning for audio signals, especially for
tasks such as scene classification, event detection and audio tagging.

For the scene classification task introduced in DCASE 2013 chal-
lenge, the best performing algorithm used a machine learning ap-
proach, more specifically, a treebagger classifier using hand-crafted
features extracted from the audio recordings [3]. In the 2016 edi-
tion, most of the solutions involved deep learning approach, with
the top performance achieved by a fusion of convolutional neural
network (CNN) and binaural I-vectors [4]. Continuing a similar
trend from the previous year, the top performing algorithms for the
DCASE 2017 scene classification task employed CNNs for the au-
dio spectrogram representations [5] and used generative adversarial
network (GAN) for data augmentation [6]. In the 2018 edition of
the DCASE challenge, the best performance was achieved by use
of CNNs with adaptive division of multiple spectrogram respresen-
tations [7].

Similar to the previous editions, the DCASE 2019 challenge [8]
consists of separate challenge tasks, with Acoustic Scene Classifi-
cation being one among them. This task is further divided into three
subtasks, wherein we participate in the DCASE 2019 Task 1A. In
this subtask, the development data and evaluation data are obtained
from the same recording device. We built our proposed solution
framework inspired by the success of utilizing 2-D time-frequency
(TF) representations of binaural recordings with CNNs for classifi-
cation. However, instead of using computationally expensive audio
feature extraction steps and CNN models with large number of pa-
rameters, we utilize audio feature extraction with minimal compu-
tation and light-weight CNN models. In addition, we also explore
the effect of using rectangular kernels and non-uniform pooling op-
erations in CNN architecture as opposed to conventional square ker-
nels and uniform pooling for achieving the same task and compare
these distinct architectures in terms of accuracy as well as complex-
ity. We obtain the final prediction by ensembling the outputs from
the best-performing models identified using the test split from the
development set.

We begin this paper by describing our audio pre-processing,
feature extraction and data augmentation steps in Section 2. In Sec-
tion 3, we provide details on the two separate CNN architectures
used in our solution. The details of the database provided for the
challenge, the accuracy achieved by our solution on the test split of
the development dataset as well as the Kaggle’s private leaderboard
are provided in Section 4. Finally, the conclusions are presented in
Section 5.

2. FEATURE EXTRACTION & DATA AUGMENTATION

In this section, we describe the audio pre-processing steps as well as
the binaural audio feature extraction process. The extracted features
are then provided as input to the CNN for predicting the acoustic
scene class. In addition, we also discuss the data augmentation step
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Figure 1: Our overall solution framework consisting of binaural audio representations, feature extraction steps, multiple CNNs & model
ensembling for final prediction of the acoustic scene.

used to improve the model’s generalization to unseen data.

2.1. Binaural audio feature extraction

In our proposed system, we use the originally provided audio
recordings sampled at 48 kHz without down sampling. The time
domain audio signals are then normalized by amplitude and then
converted to the TF representation to extract the temporal and spec-
tral characteristics. As such, we first compute the short-time Fourier
transform (STFT) of the normalized time-domain audio signal. The
frame size for the STFT operation is fixed at 2048, with a frame
overlap of 50% and hanning window. Due to the large dimen-
sion of the linear STFT representation, we further compute the cor-
responding Mel-spectrogram representation using 128 Mel-bands.
The use of Mel-scale is more close to the human auditory system
and provides additional advantage of having smaller dimensional-
ity than conventional linear STFT. As the final step, we compute
the Log(·) of the Mel-spectrogram to reduce the dynamic range of
the values and make the feature space more Gaussian in distribu-
tion as reported in [9]. On the computed Log Mel-spectrograms,
we performed feature normalization to achieve zero mean with unit
variance. This mean and standard deviation was computed using
the training data and the same were used on the validation/test split.

Since the recorded data in this task is binaural in nature, the
Log Mel-spectrograms are computed separately for the Left (L),
Right (R), Mid (M), Side (S) representation. In addition, we also
use the conventional mono representation of the binaural signal for
computing the Log Mel-spectrogram. The MS representation is
obtained from the LR representation as follows

M = (L+R)/2

S = (L−R)/2. (1)

The use of LR,MS & mono representations for audio clas-
sification have been explored in earlier editions of DCASE audio
scene classification task and has been reported to achieve superior
performance [5]. However, our framework differs from [5] in few
aspects. Firstly, we do not split the 10 second audio clips to smaller
audio chunks. In other words, the entire 2-D Log Mel-spectrogram
of size 128×469 per channel is provided as input to the CNN. Sec-
ondly, instead of using each channel as a separate input to the CNN

and concatenating the corresponding CNN layers at a later stage in
the network, we combine the individual channels at the first layer
of convolution itself. Finally, we do not perform the background
subtraction (BS) method as well as the harmonic percussive source
separation (HPSS) on the mono representation used in [5] as they
involve further processing after the downmix operation and are thus
computationally more expensive. The entire framework of our solu-
tion depicting the audio representations, feature extraction, multiple
CNNs and ensembling step is shown in Figure 1.

2.2. Data Augmentation

It is well-known that deep learning algorithms perform well when
they are trained using large amounts of data. However, depending
on the task, the amount of labelled data for training maybe lim-
ited or constrained. As a result, deep learning algorithms may not
fully capture the intra-class and inter-class variations in the data. In
such situations, data augmentation plays a crucial role by increasing
the amount and variance in the training data. For acoustic signals,
conventional augmentation techniques include pitch shifting, time
stretching, adding background noise and dynamic range modula-
tion [10]. Another approach for augmentation is to mix the clips
of same acoustic class by splitting and shuffling [11]. Recently, the
use of GANs for data augmentation has also been explored in [6].

In our proposed method, to ensure a better generalization capa-
bility for the neural network, we perform the augmentation method
proposed in [12], termed as mixup. The use of mixup for improv-
ing the performance of acoustic scene classification task has been
explored in [13, 14]. In mixup, two random training examples
(xi, xj) are weighted and mixed together along with their class la-
bels (yi, yj) to form virtual training examples (x̃, ỹ) as

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj ,

(2)

with λ ∈ [0, 1] acquired by sampling from the β distribution
β(α, α), with α being a hyper parameter.
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Input: 128× 469× 2 or 128× 469× 1

Conv2D (64, {3× 3}), BatchNormalization, ReLU

MaxPooling2D {2× 2}
Conv2D (128, {3× 3}), BatchNormalization, ReLU

MaxPooling2D {2× 2}
Conv2D (256, {3× 3}), BatchNormalization, ReLU

MaxPooling2D {2× 2}
Conv2D (512, {3× 3}), BatchNormalization, ReLU

Conv2D (512, {3× 3}), BatchNormalization, ReLU

GlobalMaxPool2D

Dense(256, ReLU)

Dense(10, Softmax)

Table 1: CNN: Type-1 Architecture. Conv2D(n, {p×q}) represents
2D convolution operation with n filters of kernel size p× q.

3. CNN ARCHITECTURE

The audio features extracted by the pre-processing and data aug-
mentation steps explained in Section 2 are provided as input to a
CNN. In this work, we experimented with two distinct architectures
of CNN. The first CNN architecture is similar to the VGG-style
architecture, which uses a constant {3× 3} square-shaped kernels.
However, we use significantly less number of convolution and dense
layers as compared to the original VGG-16 architecture. In the sec-
ond CNN architecture, we employ rectangular kernels for convolu-
tion and non-uniform pooling operation for the frequency and tem-
poral dimension of the audio spectrogram. CNNs with rectangu-
lar kernels have been previously used for a variety of tasks such as
scene classification [15, 16], keyword spotting [17] and music genre
classification [18, 19]. The use of such rectangular kernels help to
treat the spectral and temporal components of the audio with dif-
ferent context sizes as compared to square-shaped kernels. In the
following subsections, we further elaborate on the above two CNN
architectures.

3.1. CNN: Type-1

This CNN architecture is similar to the VGG-style architecture. It
consists of 5 convolutions with increasing number of filters, i.e.,
(64, 128, 256, 512, 512). The kernel size is chosen as {3× 3} and
is kept constant for all the convolution layers. We also apply batch
normalization [20] and ReLU non-linear activation for each convo-
lution layers. Max pooling {2 × 2} operation is performed at the
first three convolution layers to reduce the dimensionality. Finally
we perform global max pool operation to gather all the components,
which is then connected to a dense layer of 256 units with ReLU ac-
tivation. The output layer consists of 10 units corresponding to the
number of scene classes and undergoes softmax operation to ob-
tain the prediction probabilities. The CNN: Type-1 has ≈ 4 million
parameters.

Input: 128× 469× 2 or 128× 469× 1

Conv2D (64, {3× 7}), BatchNormalization, ReLU

MaxPooling2D {3× 1}
Conv2D (128, {3× 1}), BatchNormalization, ReLU

MaxPooling2D {4× 1}
Conv2D (256, {11× 1}, padding= “valid”)

BatchNormalization, ReLU

Conv2D (512, {1× 7}), BatchNormalization, ReLU

GlobalMaxPool2D

Dense(256, ReLU)

Dense(10, Softmax)

Table 2: CNN: Type-2 Architecture. Note that we use rectangular
kernels and non-uniform pooling operation throughout the network.

3.2. CNN: Type-2

In this CNN architecture, we employ rectangular kernels instead of
square kernels. It consists of 4 convolutions with increasing num-
ber of filters, i.e., (64, 128, 256, 512). For the convolution layer-1,
we apply a kernel of size {3 × 7} for low-level feature extraction,
followed by a max pooling with size {3×1}. After reducing the di-
mension in the frequency axis, convolutions with kernel size {3×1}
is applied in convolution layer-2 to extract frequency patterns for
each time-frame. We further reduce the dimension in the frequency
axis by using {4× 1} max pooling. In the convolution layer-3, we
use a kernel size of {11 × 1} and perform “valid” convolutions.
This step ensures that spectral patterns are learnt with entire fre-
quency dimension being compressed. We do not perform pooling
across time dimension and the last convolution layer uses filter size
of {1 × 7} to learn only the temporal characteristics. Similar to
CNN-1, we apply batch normalization and ReLU non-linear activa-
tion for each convolution layers. After the convolution layers, all
the components are collected using the global max pooling opera-
tion, which is further input to a fully connected layer of 256 units
with ReLU activation. The output layer consists of 10 units cor-
responding to the number of scene classes and undergoes softmax
operation to obtain the prediction probabilities. The CNN: Type-2
uses ≈ 1.4 million parameters. This is 3 times lower number of
parameters as compared to CNN: Type-1 and therefore, a compara-
tively less-complex architecture.

By employing the above distinct architectures of CNNs, we ex-
pect each of them to learn different low-level and high-level features
of the audio spectrogram. While CNN: Type-1 treats the frequency
and temporal dimension equally using square kernels, CNN:Type-2
treats these dimensions with different context sizes using rectangu-
lar kernels. Note that for LR & MS representations, the input size
is 128 × 469 × 2, with each channel arranged back to back and
we combine the individual channels at the first layer of convolu-
tion itself. For the case of mono representation, the input size is
128× 469× 1.
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Methods Mean accuracy (%)
Baseline 62.5

CNN:Type-1 - Mono 73.04

CNN:Type-1 - LR 74.20

CNN:Type-1 - MS 75.19

CNN:Type-2 - Mono 69.86

CNN:Type-2 - LR 69.79

CNN:Type-2 - MS 72.90

Ensemble 79.35

Table 3: Mean accuracy on the test split from the development set
using the baseline system, the proposed CNN architectures for each
representation and after ensembling. For ensembling, the top-4 best
performing models are selected.

4. DATABASE & RESULTS

The TAU Urban Acoustic Scenes 2019 dataset [21] for this task is
the extension of the 2018 TUT Urban Acoustic Dataset, consisting
of binaural audio recordings from various acoustic scenes in differ-
ent cities. The recordings were made using the Soundman OKM II
Klassik/studio A3, electret binaural microphone and a Zoom F8 au-
dio recorder using 48 kHz sampling rate and 24 bit resolution. For
each acoustic scene class, such recordings were collected from dif-
ferent locations in the city. Each original recordings were split into
segments with a length of 10 seconds as development and evalua-
tion set. The audio scenes are namely {“Airport”, “Indoor shopping
mall”, “Metro station”, “Pedestrian street”, “Public square”, “Street
with medium level of traffic”, “Travelling by a tram”, “Travelling
by a bus”, “Travelling by an underground metro” & “Urban park”}.

From the training split of the development set, we use a ran-
dom split of 15% as the hold-out validation set for hyperparameter
tuning. We do not utilize any external data or pre-trained models
for training our system. The optimization is performed using the
Adam optimizer [22], with an initial learning rate of 0.001 and a
maximum epoch of 200 with a batch size of 32 samples. We re-
duce the learning rate by a factor of 0.1 if the validation loss does
not decrease after 5 epochs. We use early stopping method to stop
the training if the validation loss does not decrease after 10 epochs.
The categorical cross-entropy is chosen as the loss function. For
the data augmentation step using mixup, we kept α = 0.3 for all the
models. The baseline system [23] also used a CNN based approach
on Log Mel spectrogram of 40 bands, consisting of two CNN lay-
ers and one fully connected layer. We chose Keras [24] as our deep
learning framework for all experiments.

For the CNN: Type-1, using the mono representation, we get
an average accuracy of 73.04%. In comparison, the MS and LR
representation, we achieve a mean accuracy of 75.19% and 74.2%,
respectively. For CNN: Type-2, the mean accuracy are 69.86%,
72.9% & 69.79% using the mono, MS and LR representation, re-
spectively. From both these results, we conclude that theMS repre-
sentation is best suited for this task. The performance drop in CNN:
Type-2 can be attributed to the low-complex architecture used. We
also note that better tuning of the parameters may be required to en-
able this CNN to better capture the spectral and temporal patterns

Scene Label Baseline system Proposed system
Accuracy (%) Accuracy (%)

Airport 48.4 90.2

Bus 62.3 92.0

Metro 65.1 74.7

Metro station 54.5 80.2

Park 83.1 65.1

Public square 40.7 80.5

Shopping mall 59.4 75.5

Street pedestrian 60.9 87.5

Street traffic 86.7 80.2

Tram 64.0 79.4

Average 62.5 79.3

Table 4: Comparison of class-wise accuracy on the test split from
the development set using the baseline system and the proposed sys-
tem after ensembling.

which can lead to performance improvement as well.
Based on performance on the test split, we select the top-4 best

performing models (CNN: Type-1 : MS, LR, Mono, CNN: Type-
2: MS) for the final ensembling. We ensemble the output predic-
tions from each of the 4 models by computing the geometric mean
of the predictions. The final prediction is done by selecting the class
with maximum probability on the ensembled prediction. After this
ensembing step, we obtain a mean accuracy of 79.35% on the test
split of the development set.

The classification results for all the proposed models and en-
sembled solution compared with the baseline system are shown in
Table 3. The class-wise accuracy of the proposed system after en-
sembling for the test split is compared with the baseline system is
shown in Table 4. It can be seen that the proposed system achieves
better accuracy for all classes except for “Park” and “Street traffic”.
For the evaluation on Kaggle leaderboard set, we used the entire de-
velopment set for training the proposed system. In the Kaggle’s pri-
vate leaderboard [25], the baseline system achieved a system score
of 63.00%. In comparison, our solution was ranked 4th with sys-
tem score of 83.16%, thereby achieving an improvement of≈ 20%
over the baseline system.

5. CONCLUSIONS

In this paper, we provided the details of our solution to the
DCASE2019 Task1A - Acoustic Scene Classification. We de-
scribed the audio pre-processing, feature extraction steps and the
various binaural representations used as input the neural network.
The architecture of two distinct and light-weight CNNs used for the
classification are described. We compared the performance of these
CNNs on each binaural representations in terms of classification ac-
curacy as well as their complexity. After ensembling multiple mod-
els, our system achieves an average accuracy of 79.35% on the test
split from the development set. The solution was ranked 4th with
system score of 83.16% in the Kaggle’s private leaderboard.
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