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ABSTRACT

Factory machinery is prone to failure or breakdown, resulting in sig-
nificant expenses for companies. Hence, there is a rising interest in
machine monitoring using different sensors including microphones.
In scientific community, the emergence of public datasets has been
promoting the advancement in acoustic detection and classification
of scenes and events, but there are no public datasets that focus on
the sound of industrial machines under normal and anomalous op-
erating conditions in real factory environments. In this paper, we
present a new dataset of industrial machine sounds which we call a
sound dataset for malfunctioning industrial machine investigation
and inspection (MIMII dataset). Normal and anomalous sounds
were recorded for different types of industrial machines, i.e. valves,
pumps, fans and slide rails. To resemble the real-life scenario, var-
ious anomalous sounds have been recorded, for instance, contami-
nation, leakage, rotating unbalance, rail damage, etc. The purpose
of releasing the MIMII dataset is to help the machine-learning and
signal-processing community to advance the development of auto-
mated facility maintenance.

Index Terms— Machine sound dataset, Acoustic scene classi-
fication, Anomaly detection, Unsupervised anomalous sound detec-
tion

1. INTRODUCTION

The increasing demand for automatic machine inspection is at-
tributable to the need for a better quality of factory equipment main-
tenance. The discovery of malfunctioning machine parts mainly
depends on the experience of field engineers. However, shortage of
field experts due to the increased number of requests for inspection
has become an important problem in the industry. Therefore, an
efficient and affordable solution to this problem is highly desirable.

In the past decade, industrial Internet of Things (IoT) and data-
driven techniques have been revolutionizing the manufacturing in-
dustry, and different approaches have been undertaken for moni-
toring the state of machinery; for example, vibration sensor-based
approaches [1–4], temperature sensor-based approaches [5], pres-
sure sensor-based approaches [6], etc. Another approach is to de-
tect anomalies from sound by using technologies for acoustic scene
classification and event detection [7–13]. A remarkable advance-
ment has been made in classification of acoustic scenes and detec-
tion of acoustic events, and there are many promising state-of-the-
art studies [14–16]. We know that the emergence of numerous open
benchmark dataset [17–20] is essential for the advancement of the
research field. However, to the best of our knowledge, there is no

public dataset which contains different types of machine sounds in
real factory environments.

In this paper, we introduce a new dataset of machine sounds
in normal and anomalous operating conditions in real factory envi-
ronments. We include the sound of four machine types: (i) valves,
(ii) pumps, (iii) fans, and (iv) slide rails. For each type of machine,
we consider seven kinds of product models. We assume that the
main task is to find an anomalous condition of the machine during a
10-second sound segment in an unsupervised learning situation. In
other words, only normal machine sounds can be used in the train-
ing phase, and one has to correctly distinguish between a normal
machine sound and an abnormal machine sound in the test phase.
The main contributions of this paper can be summarized as follows:
(1) We created an open dataset for malfunctioning industrial ma-
chine investigation and inspection (MIMII), first of its kind. (We
will release this dataset by the workshop.) This dataset contains a
total of 26,092 sound files for normal conditions of four different
machine types. It also contains real-life anomalous sound files for
each category of the machines. (2) Using our developed dataset,
we have explored an autoencoder-based model for each type of ma-
chine with various noise conditions. These results can be taken as
a benchmark to improve the accuracy of anomaly detection in the
MIMII dataset.

The rest of the paper is organized as follows. In Section 2, we
describe the recording environment and the setup. The details of
the dataset content are given in Section 3. The autoencoder-based
detection benchmark and results are discussed in Section 4. Section
5 concludes the paper.

2. RECORDING ENVIRONMENT AND SETUP

The dataset was collected using TAMAGO-03 microphone, manu-
factured by System In Frontier Inc [21]. It is a circular microphone
array which consists of eight distinct microphones; the details of
the microphone array are shown in Figure 1. By using the mi-
crophone array, not only single-channel-based approaches but also
multi-channel-based ones can be evaluated. The microphone array
was kept at a distance of 50 cm from the machine (10 cm in case
of valves); 10-second sound segments were recorded. The dataset
contains eight separate channels for each segment. Figure 2 depicts
the recording setup with the direction and distance for each kind of
machine. It should be noted that each machine sound was recorded
in separate session. In running condition, the sound of the machine
was recorded as 16-bit audio signals sampled at 16 kHz in a rever-
berant environment. Apart from the target machine sound, back-
ground noise in multiple real factories was continuously recorded
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Figure 1: Circular microphone array

to mix it with the target machine sound for simulating real envi-
ronments. For recording the background noise, we used the same
microphone array as for the target machine sound.

3. DATASET CONTENT

The MIMII dataset contains the sound of four different types of ma-
chines: valves, pumps, fans, and slide rails. The valves are solenoid
valves that are repeatedly opened and closed. The pumps are water
pumps, which drained water from a pool and discharged water to
the pool continuously. The fans represent industrial fans, which are
used to provide a continuous flow or gas of air in factories. The
slide rails in this paper represent linear slide systems, which consist
of a moving platform and a stage base. The types of the sounds pro-
duced by the machines are stationary and non-stationary, have dif-
ferent features, and different degrees of difficulty. Figure 3 depicts
a power spectrogram of the sound of all four types of machines,
clearly showing that each machine has its unique sound character-
istics.

The list of sound files for each machine type is reported in the
Table 1. Each type of machines consists of seven individual ma-
chines. Individual machines may be of a different product model.
We know that large datasets incorporating real-life complexity are
needed to effectively train the models, so we recorded a total of
26,092 normal sound segments for all individual machines. In addi-
tion to this, different real-life anomalous scenarios have been con-
sidered for each kind of machine, for instance, contamination, leak-
age, rotating unbalance, rail damage, etc. Various running condi-
tions are listed in Table 2. The number of sound segments for each
anomalous sound for each different type of machine is small be-
cause we regard the main target of our dataset as an unsupervised
learning scenario and regard the anomalous segments as a part of
test data.

As explained in Section 2, the background noise recorded in
multiple real factories was mixed with the target machine sound.
Eight channels are considered separately during mixing the original
sounds with the noise. For a certain signal-to-noise ratio (SNR) γ
dB, the noise-mixed data of each machine model was made by the
following steps:

1. The average power over all segments of the machine models,
a, was calculated.

2. For each segment i from the machine model,

Table 1: MIMII dataset content details

Machine type/
model ID

Segments
for normal

condition

Segments
for anomalous

condition

V
al

ve

00 991 119
01 869 120
02 708 120
03 963 120
04 1000 120
05 999 400
06 992 120

Pu
m

p

00 1006 143
01 1003 116
02 1005 111
03 706 113
04 702 100
05 1008 248
06 1036 102

Fa
n

00 1011 407
01 1034 407
02 1016 359
03 1012 358
04 1033 348
05 1109 349
06 1015 361

Sl
id

e
ra

il
00 1068 356
01 1068 178
02 1068 267
03 1068 178
04 534 178
05 534 178
06 534 89

Total 26092 6065

Table 2: List of operations and anomalous conditions

Machine
type Operations

Examples of
anomalous
conditions

Valve Open/close repeat
with different timing

More than
two kinds of

contamination

Pump
Suction from/
discharge to
a water pool

Leakage,
contamination,
clogging, etc.

Fan Normal work
Unbalanced,

voltage change,
clogging, etc.

Slide rail Slide repeat at
different speeds

Rail damage,
loose belt,

no grease, etc.
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Figure 2: Schematic experimental setup for dataset recording

(a) a background-noise segment j is randomly selected,
and its power bj is tuned so that γ = 10 log10 (a/bj).

(b) The noise-mixed data is calculated by adding
the target-machine segment i and the power-tuned
background-noise segment j.

4. EXPERIMENT

An example of benchmarking is shown in this section. Our main
goal is to detect anomalous sounds in an unsupervised learning
scenario as discussed in Section 1, and several studies have suc-
cessfully used autoencoders for unsupervised anomaly detection
[12, 22–24], so an autoencoder-based unsupervised anomaly detec-
tor was evaluated.

We consider log-Mel spectrogram as an input feature. To cal-
culate the Mel spectrogram, we consider a frame size of 1024, a
hop size of 512 and a mel filter banks of 64 in our experiment. Five
frames have been combined to initiate our 320 dimensional input
feature vector x. The parameters of the encoder and decoder neu-
ral networks (i.e. θ = (θe, θd)) are trained to minimize the loss
function given as follows:

LAE(θe, θd) = ∥x − D(E(x | θe) | θd)∥2
2 (1)

Our basic assumption is that this trained model will give high re-
construction error for anomalous machine sounds. The autoencoder
network structure for the experiment is summarized as follows:
The encoder network (E(·)) comprises FC(Input, 64, ReLU);
FC(64, 64, ReLU); and FC(64, 8, ReLU), and the decoder net-
work (D(·)) incorporates FC(8, 64, ReLU); FC(64, 64, ReLU)

and FC(64, Output, none) where FC(a, b, f) means a fully-
connected layer with a input neurons, b output neurons, and acti-
vation function f . The ReLUs are Rectified Linear Units [25]. The
network is trained with Adam [26] optimization technique for 50
epochs.

For each machine type and model ID, all the segments were
split into a training dataset and a test dataset. All the anomalous
segments were regarded as the test dataset, the same number of
normal segments were randomly selected and regarded as the test
dataset, and all the rest normal segments were regarded as the train-
ing dataset. By using the training dataset consisting only of normal
ones, different autoencoders were trained for each machine type and
model ID. Anomaly detection was performed for each segment by
thresholding the reconstruction error averaged over 10 seconds, and
the area under the curve (AUC) values were calculated for the test
dataset for each machine type and model ID. In addition to this, we
also considered different levels of SNR (with factory noise) in the
experiment, for example, 6 dB, 0 dB, and -6 dB.

Table 3 shows the AUCs averaged over three training runs with
independent initializations. In Table 3, It is clear that the AUCs for
valves are lower than the other machines. Sound signals of valves
are non-stationary, in particular, impulsive and sparse in time, and
the reconstruction error averaged over time tends to be small. So,
it is difficult to detect anomalies for valves. In contrast, it is easier
to detect anomalies for fans than the other machines because sound
signals of fans are stationary. Moreover, for some machine models,
the AUC decreases rapidly as the noise level increases. These re-
sults indicate that it is important to solve the degradation caused by
non-stationarity and noise for unsupervised anomalous sound de-
tection.

5. CONCLUSION AND PERSPECTIVES

In this paper, we introduced the MIMII dataset, a real-world dataset
for investigating the malfunctioning behavior of the industrial ma-
chines. We collected 26,092 sound segments of normal condi-
tion and 6,065 sound segments of anomalous condition and mixed
the background noise recorded in multiple real factories with the
machine-sound segments for simulating real environments. In ad-
dition, using the MIMII dataset, we showed an example of evalu-
ation for autoencoder-based unsupervised anomalous sound detec-
tion. We observed that non-stationary machine sound signals and
noise are the key issues for developing the unsupervised anomaly
detector. These results can be taken as a benchmark to improve the
accuracy of anomaly detection in the MIMII dataset.

We will release this dataset by the workshop. To the best of our
knowledge, this dataset is the first of its kind to address the problem
of detecting anomalous conditions in industrial machinery through
machine sounds. As benchmarking is an important aspect in data
driven methods, we strongly believe that our MIMII dataset will be
very useful to the research community. We are releasing this data to
accelerate research in the area of audio event detection, specifically
for machine sounds. This dataset can be used for other use cases,
for example, to restrict the training on specific number of machine
models and then test on the remaining machine models. This study
will be useful for measuring the domain adaptation capability of the
different methods applied on machines from different manufactures.
If the community finds interest in our dataset and validates its usage,
we will improve the current version with the additional meta-data
related to different anomalies.
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(a) Valve (machine ID: 00)
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(b) Pump (machine ID: 00)
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(c) Fan (machine ID: 00)
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(d) Slide rail (machine ID: 00)

Figure 3: Examples of power spectrograms on a normal condition at 6 dB SNR.

Table 3: AUCs for all machines
Machine type/
model ID

Input SNR
6 dB 0 dB -6 dB

V
al

ve

00 0.68 0.55 0.62
01 0.77 0.71 0.61
02 0.66 0.59 0.57
03 0.70 0.65 0.44
04 0.64 0.65 0.50
05 0.52 0.48 0.44
06 0.70 0.66 0.53
Avg. 0.67 0.61 0.53

Pu
m

p

00 0.84 0.65 0.58
01 0.98 0.90 0.73
02 0.45 0.46 0.52
03 0.79 0.81 0.75
04 0.99 0.95 0.93
05 0.66 0.66 0.64
06 0.94 0.76 0.61
Avg. 0.81 0.74 0.68

Fa
n

00 0.75 0.63 0.57
01 0.97 0.90 0.70
02 0.99 0.83 0.68
03 1.00 0.89 0.70
04 0.92 0.75 0.57
05 0.95 0.90 0.83
06 0.99 0.97 0.83
Avg. 0.94 0.84 0.70

Sl
id

e
ra

il

00 0.99 0.99 0.93
01 0.94 0.90 0.83
02 0.93 0.79 0.74
03 0.99 0.85 0.71
04 0.88 0.78 0.61
05 0.84 0.70 0.60
06 0.71 0.56 0.52
Avg. 0.90 0.80 0.70
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