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ABSTRACT
This paper presents Task 4 of the Detection and Classification of
Acoustic Scenes and Events (DCASE) 2019 challenge and pro-
vides a first analysis of the challenge results. The task is a follow-
up to Task 4 of DCASE 2018, and involves training systems
for large-scale detection of sound events using a combination of
weakly labeled data, i.e. training labels without time boundaries,
and strongly-labeled synthesized data. We introduce the Domes-
tic Environment Sound Event Detection (DESED) dataset, mixing
a part of last year’s dataset and an additional synthetic, strongly la-
beled, dataset provided this year that we describe in more detail. We
also report the performance of the submitted systems on the official
evaluation (test) and development sets as well as several additional
datasets. The best systems from this year outperform last year’s
winning system by about 10% points in terms of F-measure.

Index Terms— Sound event detection, weakly labeled data,
semi-supervised learning, synthetic data

1. INTRODUCTION

Sound conveys important information in our everyday lives – we
depend on sounds to better understand changes in our physical en-
vironment and to perceive events occurring around us. We perceive
the sound scene (the overall soundscape of e.g., an airport or inside
a house) as well as individual sound events (e.g., car honks, foot-
steps, speech, etc.). Sound event detection within an audio record-
ing refers to the task of detecting and classifying sound events,
that is, temporally locating the occurrences of sound events in the
recording and recognizing which object or category each sound be-
longs to. Sound event detection has potential applications in noise
monitoring in smart cities [1, 2], surveillance [3], urban planning
[1], multimedia information retrieval [4, 5]; and domestic applica-
tions such as smart homes, health monitoring systems and home
security solutions [6, 7, 8] to name a few. In recent years the field
has gained increasing interest from the broader machine learning
and audio processing research communities.

Sound event detection (SED) systems trained using weak la-
bels have seen significant interest [6, 9, 10, 11, 12] in the research
community, as they address some of the challenges involved in de-
veloping models that require strongly labeled data for training. In
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particular, strongly labeled data is time-consuming and difficult to
annotate as it requires annotating the temporal extent of event oc-
currences in addition to their presence or absence. Strong label an-
notations are also more likely to contain human errors/disagreement
given the ambiguity in the perception of some sound event onsets
and offsets. In the case of weakly labeled data, we only have in-
formation about whether an event is present in a recording or not.
We have no information about how many times the event occurs nor
the temporal locations of the occurrences within the audio clip. For
real-world applications, it is critical to build systems that generalize
over a large number of sound classes and a variety of sound event
distributions. In such cases, it may be more feasible to collect large
quantities of weakly labeled data as opposed to strongly labeled data
which is significantly more costly in terms of both time and effort.

We propose to follow up on DCASE 2018 Task 4 [6] and in-
vestigate the scenario where large-scale SED systems can exploit
the availability of a small set of weakly annotated data, a larger set
of unlabeled data and an additional training set of synthetic sound-
scapes with strong labels. Given these data, the goal of this task is
to train SED models that output event detections with time bound-
aries (i.e. strong predictions) in domestic environments. That is,
a system has to detect the presence of a sound event as well as
predict the onset and offset times of each occurrence of the event.
We generate strongly annotated synthetic soundscapes using the
Scaper library [13]. Given a set of user-specified background and
foreground sound event recordings, Scaper automatically generates
soundscapes containing random mixtures of the provided events
sampled from user-defined distributions. These distributions are de-
fined via a sound event specification including properties such as
event duration, onset time, signal-to-noise ratio (SNR) with respect
to the background and data augmentation (pitch shifting and time
stretching). This allows us to generate multiple different sound-
scape instantiations from the same specification, which is chosen
based on our general requirements for the soundscapes. Since gen-
erating such strongly labeled synthetic data is feasible on a large
scale, we provide a strongly labeled synthetic dataset in order to ex-
plore whether it can help improve SED models. We believe insights
learned from this task will be beneficial to the community as such
an exploration is novel and will provide a pathway to developing
scalable SED systems.

The remainder of this manuscript is organized as follows: Sec-
tion 2 provides a brief overview of the task definition and how
the development and evaluation datasets were created. Section
3 describes the baseline system and the evaluation procedure for
DCASE 2019 Task 4. Section 4 gives an overview of the systems
submitted to the challenge for this task. Finally, conclusions from
the challenge are provided in section 5.

https://doi.org/10.33682/006b-jx26
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Class Unique Dev set
events Clips Events

Alarm/bell/ringing 190 392 755
Blender 98 436 540
Cat 88 274 547
Dishes 109 444 814
Dog 136 319 516
Electric shaver/toothbrush 56 221 230
Frying 64 130 137
Running water 68 143 157
Speech 128 1272 2132
Vacuum cleaner 74 196 204
Total 1011 2045 6032

Table 1: Class-wise statistics for the synthetic development subset.

2. TASK DESCRIPTION AND THE DESED DATASET

2.1. Task description

This task is the follow-up to DCASE 2018 Task 4 [6] and focuses
on the same 10 classes of sound events. Systems are expected to
produce strongly labeled output (i.e. detect sound events with a start
time, end time, and sound class label), but are provided with weakly
labeled data (i.e. sound recordings with only the presence/absence
of a sound included in the labels without any timing information)
for training. Multiple events can be present in each audio recording,
including overlapping events. As in the previous iteration of this
task, the challenge entails exploiting a large amount of unbalanced
and unlabeled training data together with a small weakly annotated
training set to improve system performance. However, unlike last
year, in this iteration of the challenge we also provide an additional
training set with strongly annotated synthetic soundscapes. This
opens the door to exploring scientific questions around the informa-
tiveness of real (but weakly labeled) data versus strongly-labeled
synthetic data, whether the two data sources are complementary or
not, and how to best leverage these datasets to optimize system per-
formance.

2.2. DESED development dataset

The DESED development dataset is composed of 10-sec audio clips
recorded in a domestic environment or synthesized to simulate a
domestic environment. The real recordings are taken from Au-
dioSet [14]. The development dataset is divided in two subsets: (i)
A training subset composed of real recordings similar to DCASE
2018 task 4 [10] and synthetic soundscapes generated using Sca-
per (see also Table 1). (ii) A validation subset composed of real
recordings with strongly labeled data which is the combination of
the validation and evaluation sets from DCASE 2018 Task 4.

2.2.1. Synthetic soundscape generation procedure

The subset of synthetic soundscapes is comprised of 10 second au-
dio clips generated with Scaper [13], a python library for sound-
scape synthesis and augmentation. Scaper operates by taking a set
of foreground sounds and a set of background sounds and auto-
matically sequencing them into random soundscapes sampled from
a user-specified distribution controlling the number and type of
sound events, their duration, signal-to-noise ratio, and several other
key characteristics. The foreground events are obtained from the

Class Unique Synth set 1
events Clips Events

Alarm/bell/ringing 63 101 184
Blender 27 84 95
Cat 26 113 197
Dishes 34 161 293
Dog 43 124 217
Electric shaver/toothbrush 17 113 117
Frying 17 52 52
Running water 20 67 73
Speech 47 471 803
Vacuum cleaner 20 92 93
Total 314 1378 2124

Table 2: Class-wise statistics for the synthetic evaluation subsets

Freesound Dataset (FSD) [15, 16]. Each sound event clip was ver-
ified by a human to ensure that the sound quality and the event-
to-background ratio were sufficient to be used as an isolated sound
event. We also controlled for whether the sound event onset and
offset were present in the clip. Each selected clip was then seg-
mented when needed to remove silences before and after the sound
event and between sound events when the file contained multiple
occurrences of the sound event class. The number of unique iso-
lated sound events per class used to generate the subset of synthetic
soundscapes is presented in Table 1. We also list the number of clips
containing each sound class and the number of events per class.

The background textures are obtained from the SINS dataset
(activity class “other”) [17]. This particular activity class was se-
lected because it contains a low amount of sound events from our
10 target foreground sound event classes. However, there is no guar-
antee that these sound event classes are completely absent from the
background clips. A total of 2060 unique background clips are used
to generate the synthetic subset.

Scaper scripts are designed such that the distribution of sound
events per class, the number of sound events per clip (depending
on the class) and the sound event class co-occurrence are similar
to that of the validation set which is composed of real recordings.
The synthetic soundscapes are annotated with strong labels that are
automatically generated by Scaper [13].

2.3. DESED evaluation dataset

The evaluation set is composed of two subsets: a subset with real
recordings and a subset with synthetic soundscapes.

2.3.1. Real recordings

The first subset contains 1,013 audio clips and is used for rank-
ing purposes. It is comprised of audio clips extracted from 692
YouTube and 321 Vimeo videos under creative common licenses.
Each clip is annotated by a human and annotations are verified by a
second annotator.

2.3.2. Synthetic soundscapes

The second subset is comprised of synthetic soundscapes generated
with Scaper1. This subset is used for analysis purposes and its de-

1The JAMS [18] annotation files corresponding to these soundscapes can
be accessed from DCASE website: http://dcase.community/.
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Figure 1: Mean-teacher model. η and η′ represent noise applied to the different models (in this case dropout).

sign is motivated by the analysis of last year’s results [10]. In par-
ticular, most submissions from last year performed poorly in terms
of event segmentation. One of the goals of this subset is to facilitate
studies on the extent to which including strongly labeled data in
the training set helps improve and refine the segmentation output.
The foreground events are obtained from the FSD [15, 16]. The
selection process was the same as described for the development
dataset. Background sounds are extracted from YouTube videos
under a Creative Common license and from the Freesound subset
of the MUSAN dataset [19]. The synthetic subset is further divided
into several subsets (described below) for a total of 12,139 audio
clips synthesized from 314 isolated events. The isolated sound event
distribution per class is presented in Table 2.

Varying foreground-to-background SNR: A subset (denoted
Synthetic set 1) of 754 soundscapes is generated with a sound event
distribution similar to that of the training set. Four versions of this
subset are generated varying the value of the foreground events’
SNR with respect to the background: 0 dB, 6 dB, 15 dB and 30 dB.

Audio degradation: Six alternative versions of the previous
subset (with SNR=0 dB) are generated introducing artificial degra-
dation with the Audio Degradation Toolbox [20]. The following
degradations are used (with default parameters) : “smartPhonePlay-
back”, “smartPhoneRecording”, “unit applyClippingAlternative”,
“unit applyLowpassFilter”, “unit applyHighpassFilter” and
“unit applyDynamicRangeCompression”.

Varying onset time: A subset of 750 soundscapes is generated
with uniform sound event onset distribution and only one event per
soundscape. The SNR parameter is set to 0 dB. Three variants of
this subset are generated with the same isolated events, only shifted
in time. In the first version, all sound events have an onset located
between 250 ms and 750 ms, in the second version the sound event
onsets are located between 4.75 s and 5.25 s and in the last version
the sound event onsets are located between 9.25 s and 9.75 s.

Long sound events vs. short sound events: A subset with
522 soundscapes is generated where the background is selected
from one of the five long sound event classes (Blender, Electric
shaver/toothbrush, Frying, Running water and Vacuum cleaner).
The foreground sound events are selected from the five short sound
event classes (Alarm/bell/ringing, Cat, Dishes, Dog and Speech).
Three variants of this subset are generated with similar sound event
scripts and varying values of the sound event SNR parameter (0 dB,
15 dB and 30 dB).

3. BASELINE

The baseline system2 is inspired by the winning system from
DCASE 2018 Task 4 by Lu [21]. It uses a mean-teacher model
which is a combination of two models: a student model and a
teacher model (both have the same architecture). Our implemen-
tation of the mean-teacher model is based on the work of Tarvainen
and Valpola [22]. The student model is the final model used at infer-
ence time, while the teacher model is aimed at helping the student
model during training and its weights are an exponential moving
average of the student model’s weights. A depiction of the baseline
model is provided in Figure 1.

The models are a combination of a convolutional neural net-
work (CNN) and a recurrent neural network (RNN) followed by an
aggregation layer (in our case an attention layer). The output of
the RNN gives strong predictions (the weights of this model are de-
noted θs) while the output of the aggregation layer gives the weak
predictions (the weights of this model are denoted θ).

The student model is trained on the synthetic and weakly la-
beled data. The loss (binary cross-entropy) is computed at the frame
level for the strongly labeled synthetic data and at the clip level for
the weakly labeled data. The teacher model is not trained, rather, its
weights are a moving average of the student model (at each epoch).
During training, the teacher model receives the same input as the
student model but with added Gaussian noise, and helps train the
student model via a consistency loss (mean-squared error) for both
strong (frame-level) and weak predictions. Every batch contains a
combination of unlabeled, weakly and strongly labeled samples.

This results in four loss components: two for classification
(weak and strong) and two for consistency (weak and strong), which
are combined as follows:

L(θ) =Lclassw (θ) + σ(λ)Lconsw (θ)

+ Lclasss(θs) + σ(λ)Lconss(θs)
(1)

4. SUBMISSION EVALUATION

DCASE 2019 Task 4 obtained 57 submissions from 18 different
teams involving 60 researchers overall.

2Open source code available at: https://github.com/
turpaultn/DCASE2019_task4/tree/public/baseline
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Rank System Classifier
Real recordings Synthetic

Event-based Segment-based Event-based
Eval Youtube Vimeo Valid Eval Set 1

1 Lin, ICT CNN 42.7% 47.7% 29.4% 45.3% 64.8% 47.6%
2 Delphin-Poulat, OL CRNN 42.1% 45.8% 33.3% 43.6% 71.4% 59.8%
3 Shi, FRDC CRNN 42.0% 46.1% 31.5% 42.5% 69.8% 53.2%
4 Cances, IRIT CRNN 39.7% 43.0% 30.9% 39.9% 64.7% 50.8%
5 Yan, USTC CRNN 36.2% 38.8% 28.7% 42.6% 65.2% 41.8%
6 Lim, ETRI CRNN, Ensemble 34.4% 38.6% 23.7% 40.9% 66.4% 42.5%
7 Kiyokawa, NEC ResNet, SENet 32.4% 36.2% 23.8% 36.1% 65.3% 42.3%
8 Chan, NU NMF, CNN 31.0% 34.7% 21.6% 30.4% 58.2% 46.7%
9 Zhang, UESTC CNN,ResNet,RNN 30.8% 34.5% 21.1% 35.6% 60.9% 49.2%
10 Kothinti, JHU CRNN, RBM, CRBM, PCA 30.7% 33.2% 23.8% 34.6% 53.1% 35.6%
11 Wang B., NWPU CNN, RNN, ensemble 27.8% 30.1% 21.7% 31.9% 61.6% 32.9%
12 Lee, KNU CNN 26.7% 28.1% 22.9% 31.6% 50.2% 33.0%

Baseline 2019 CRNN 25.8% 29.0% 18.1% 23.7% 53.7% 40.6%
13 Agnone, PDL CRNN 25.0% 27.1% 20.0% 59.6% 60.4% 46.7%
14 Rakowski, SRPOL CNN 24.2% 26.2% 19.2% 24.3% 63.4% 29.7%
15 Kong, SURREY CNN 22.3% 24.1% 17.0% 21.3% 59.4% 23.6%
16 Mishima, NEC ResNet 19.8% 21.8% 15.0% 24.7% 58.7% 33.0%
17 Wang D., NUDT CRNN 17.5% 19.2% 13.3% 22.4% 63.0% 14.0%
18 Yang, YSU CMRANN-MT 6.7% 7.6% 4.6% 19.4% 26.3% 7.5%

Table 3: F1-score performance on the evaluation sets

4.1. Evaluation metrics

Submissions were evaluated according to an event-based F1-score
with a 200 ms collar on the onsets and a collar on the offsets that
is the greater of 200 ms and 20% of the sound event’s length. The
overall F1-score is the unweighted average of the class-wise F1-
scores (macro-average). In addition, we provide the segment-based
F1-score on 1 s segments as a secondary measure. The metrics are
computed using the sed eval library [23].

4.2. System performance

The official team ranking (best system from each team) along with
some characteristics of the submitted systems is presented in Ta-
ble 3. Submissions are ranked according to the event-based F1-
score computed over the real recordings in the evaluation set. For
a more detailed comparison, we also provide the event-based F1-
score on the YouTube and Vimeo subsets and the segment-based
F1-score over all real recordings. The event-based F1-score on
the validation set is reported for the sake of comparison with last
year’s results (75% of the 2019 validation set is comprised of the
2018 evaluation set). Performance on synthetic recordings is not
taken into account in the ranking, but the event-based F1-score on
Synthetic set 1 (0 dB) is presented here as well. The baseline for
DCASE 2018 would obtain 22.2% F1-score on the evaluation set.

Twelve teams outperform the baseline with the best sys-
tems [24, 25, 26] outperforming the baseline by 16% points and
the best system from 2018 by over 10 % points. While the ranking
on the YouTube subset is similar to the official ranking, there rank-
ings based on the Vimeo and synthetic subsets are notably different.
Performance on the Vimeo set is in general considerably lower than
on the YouTube set and Synthethic set 1. The fact that no data
from Vimeo was used during training (unlike data from YouTube
and synthetic data) suggests that the submitted systems struggle to
generalize to an entirely unseen set of recording conditions.

All three top-performing teams used a semi-supervised mean-
teacher model [22]. Lin et al. [24] focused on the importance of
semi-supervised learning with a guided learning setup [27] and on
how synthetic data can help when used together with a sufficient
amount of real data. Delphin-Poulat et al. [25] focused on data aug-
mentation and Shi [26] focused on a specific type of data augmen-
tation where both audio files and their labels are mixed. Cances et
al. [28] proposed a multi-task learning setup where audio tagging
(producing weak predictions) and the sound event localization in
time (strong predictions) are treated as two separate subtasks [29].
The latter was also the least complex of the top-performing systems.

Most of the top-performing systems also demonstrate the im-
portance of employing class-dependent post-processing [24, 25,
28], which improves performance significantly compared to e.g. us-
ing a fixed median filtering approach. This highlights the benefits
of applying dedicated segmentation post-processing [28, 30].

5. CONCLUSION

This paper presents DCASE 2019 Task 4 and the DESED dataset,
which focus on SED in domestic environments. The goal of the task
is to exploit a small dataset of weakly labeled sound clips together
with a larger unlabeled dataset to perform SED. An additional train-
ing dataset composed of synthetic soundscapes with strong labels is
provided to explore the gains achievable with simulated data. The
best submissions from this year outperform last year’s winning sub-
mission by over 10 % points, representing a notable advancement.
Evaluation on the Vimeo subset, suggests there is still a significant
challenge in generalizing to unseen recording conditions.
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