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ABSTRACT

We describe the public release of a dataset for sound event de-
tection in urban environments, namely MAVD, which is the first of
a series of datasets planned within an ongoing research project for
urban noise monitoring in Montevideo city, Uruguay. This release
focuses on traffic noise, MAVD-traffic, as it is usually the predom-
inant noise source in urban environments. An ontology for traffic
sounds is proposed, which is the combination of a set of two tax-
onomies: vehicle types (e.g. car, bus) and vehicle components (e.g.
engine, brakes), and a set of actions related to them (e.g. idling, ac-
celerating). Thus, the proposed ontology allows for a flexible and
detailed description of traffic sounds. We also provide a baseline of
the performance of state–of–the–art sound event detection systems
applied to the dataset.

Index Terms— SED database, traffic noise, urban sound

1. INTRODUCTION

Recent years have witnessed the upsurge of the Smart City concept,
i.e. networks of Internet of Things (IoT) sensors used to collect data
in order to monitor and manage city services and resources. Noise
levels in cities are often annoying or even harmful to health, being
consequently among the most frequent complaints of urban resi-
dents [1]. This fuelled the development of technologies for moni-
toring urban sound environments, mainly oriented towards the miti-
gation of noise pollution [2, 3]. The application of signal processing
and machine learning has lead to the automatic generation of high–
level descriptors of the sound environment. This encompasses the
problem of sound event detection (SED), as an attempt at describing
the acoustic environment through the sounds encountered in it. It is
defined as the task of finding individual sound events, by indicating
the onset time, the duration and a text label describing the type of
sound [4, 5].

The SED problem is usually approached within a supervised
learning framework, using a set of predefined sound event classes
and annotated audio examples of them [5, 6]. One of the most chal-
lenging aspects of the problem is that it involves the detection of
overlapping sound events. In addition, given the intrinsic variabil-
ity of sound sources of the same type (e.g. cars) and the influence
of the acoustic environment (e.g. reverberation, distance) for dif-
ferent locations and situations, the acoustic features of each class
can exhibit great diversity. The solutions proposed typically use
a mel–spectral representation of the audio signal as the input fea-
tures, and apply different classification methods, including Random
Forest [7], GMM [8], and more recently convolutional neural net-
works [9, 10] and recurrent neural networks [11, 12, 13].

1.1. Related work

Publicly available datasets for SED are of crucial importance to fos-
ter the development of the field as they encourage reproducible re-
search and fair comparison of algorithms. In this respect, the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
challenge, held for the first time in 2013 and repeated every year
since 2016, has established a benchmark for sound event detection
using open data [6, 14].

Two of the datasets used in the DCASE challenge for SED in ur-
ban environments are part of the TUT database (TUT Sound Events
2016 and 2017), which was collected in residential areas in Finland
by Tampere University of Technology (TUT) and contain overlap-
ping sound events manually annotated [8]. The classes are defined
during the labeling process. In a first step, the participants are asked
to mark all the sound events freely, and later the labels are grouped
into more general concepts. In addition, the tags must be composed
of a noun and a verb, such as ENGINE ACCELERATING [8].

Manual annotation of audio recordings for SED is a very time
consuming task, primarily due to multiple overlapping sounds,
which has limited the amount of annotated audio available. A way
to alleviate the work involved in manual annotation is to use weak
labels, as in DCASE 2017 task 4 [14], which indicate the presence
of a source without giving time boundaries. Another approach is to
create synthetic audio mixtures using isolated sound events. This
is the approach adopted in the URBAN-SED dataset [9], that con-
tains synthesized soundscapes with sound event annotations gener-
ated using Scaper [9] (a software library for soundscape synthesis).
The original sound events are extracted from the UrbanSound8K
dataset [15], where a taxonomic categorization of urban sounds is
proposed. At the top level, four groups are defined: HUMAN, NAT-
URAL, MECHANICAL and MUSICAL, which have been used in pre-
vious works. To define the lower levels, the most frequent noise
complaints in New York city from 2010 to 2014 were used [15].

Table 1 summarizes the characteristics of the available datasets
for SED in urban environments. While the TUT datasets are lim-
ited to only one and two hours, the URBAN-SED dataset comprises
30 hours of audio but contains synthetic audio mixtures instead of
real recordings. Other resources for research on urban sound en-
vironments are available, such as the SONYC Urban Sound Tag-
ging (SONYC–UST) dataset [2], though they are not specifically
devoted to the SED problem. If traffic sounds are to be considered,
the DCASE 2017 task 4 training dataset has only weak labels, the
TUT database has only a moderate amount of traffic activity since
it was recorded in a calm residential area, and only three out of the
ten classes in URBAN-SED are related to traffic (i.e. CAR HORN,
ENGINE IDLING and SIREN). Therefore, there is plenty of room for
expanding the existing resources, in particular, for specific applica-
tions’ scenarios such traffic noise monitoring.

https://doi.org/10.33682/kfmf-zv94

263



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

dataset classes hours type label

TUT-SE 2016 [8] 7 1 recording strong
TUT-SE 2017 [8] 6 2 recording strong
URBAN-SED [9] 10 30 synthetic strong

DCASE2017 #4 [14] 17 141 10-s clips weak
MAVD-traffic 21 4 recording strong

Table 1: Available datasets for SED in urban environments, along
with the released dataset.

1.2. Our contributions

We describe the first public release of a dataset for SED in ur-
ban environments, called MAVD, for Montevideo Audio and Video
Dataset. This release focuses on traffic sounds, namely MAVD-
traffic, which corresponds to the most prevalent noise source in ur-
ban environments. The records were generated in various locations
in Montevideo city and include both audio and video files, along
with annotations of the sound events. The video files, apart from be-
ing useful for manual annotation, open up new research possibilities
for SED using audio and video. The annotations follow a new ontol-
ogy for traffic sounds that is proposed in this work. It arises from the
combination of a set of two taxonomies: vehicle types (e.g. car, bus)
and vehicle components (e.g. engine, brakes), and a set of actions
related to them (e.g. idling, accelerating). Thus, the proposed ontol-
ogy allows for a flexible and detailed description of traffic sounds.
In addition, we provide a baseline of the performance of state–of–
the–art SED systems applied to the MAVD-traffic dataset. Finally,
we discuss possible directions for further research and some efforts
we undertaken to improve and extend current dataset.

2. ONTOLOGY

The proposed ontology focuses on traffic noise. Consequently, ve-
hicles (such as cars, buses, motorcycles and trucks) are the main
sources of noise and define the classes of interest. However, vehi-
cles generate different types of sounds, for example those related to
the braking system, the rolling of the wheels or the engine, calling
for a classification that is more specific than just the type of vehicle.
One way to approach it, is by classifying sound events with different
correlated attributes, such as the sound source (object), the action,
and the context [16]. These attributes can be defined by one or sev-
eral taxonomies, implying that the same event can be classified by
several schemes simultaneously [16]. In this case, the context is
defined by urban environments where traffic noise is predominant.
Then, sound sources and actions can be described by several tax-
onomies, for instance, one that defines the type of vehicle and other
that defines the internal components that generate the sound.

We define an ontology based on a graph like the one shown in
Figure 1, which consists of two taxonomies that blend in the middle:
the top one describes the categories of vehicles; and the bottom one
describes the categories of components. The categories of compo-
nents are further combined with a set of actions to form an object-
action pair (e.g. ENGINE IDLING, ENGINE ACCELERATING).1

The categories indicated in bold are those that are called basic
level (CAR, BUS, etc. for vehicles and ENGINE, WHEEL, etc. for
components). These two taxonomies of the ontology are merged

1This could also be done in the top taxonomy for the vehicles, for exam-
ple BUS PASSING BY, CAR STOPPING, etc., but was considered redundant.

Figure 1: Graph representing the ontology. The top taxonomy refers
to the vehicle categories and the bottom one to the components. The
basic levels are indicated in bold and the subordinate level is marked
in italics. The rectangle nodes denote objects; the ellipses denote
actions; and the rounded rectangles indicate objects–actions pairs.

into what is called the subordinate level (depicted in italics), which
are combinations of elements of the categories of vehicles and com-
ponents, with the aim of providing a more detailed description of the
noise source (e.g. CAR/ENGINE IDLING, BUS/COMPRESSOR). Note
that the diagram of Figure 1 does not show all the class labels.

3. DATASET

3.1. Recordings

The recordings were produced in Montevideo, the capital city of
Uruguay, which has population of 1.4 million people. Four different
locations were included in this release of the dataset, corresponding
to different levels of traffic activity and social use characteristics:

L1. Residential area, with several shops and many buses.
L2. Park area. No housing or shops. Some light traffic nearby.
L3. Park/residential area. Similar to location L2, but next to a

residential area, with more traffic noise and less nature sounds.
L4. Residential area, with a few shops and some buses.

The sound was captured with a SONY PCM-D50 recorder at a
sampling rate of 48 kHz and a resolution of 24 bits. The video was
recorded with a GoPro Hero 3 camera at a rate of 30 frames per
second and a resolution of 1920 × 1080 pixels. Audio and video
files of about 15–minutes long were recorded at different times of
the day in the different locations.

Some basic processing was done to generate the files of the
dataset from the raw recordings. This included the synchronization
of audio and video, the removal of windy sections and the segmen-
tation into excerpts of approximately five minutes to facilitate their
manipulation. The train and validation sets are composed of 24 and
7 files from the location L1 respectively, while the test set consists
of 16 files from the L2, L3 and L4 locations2. The dataset totals
233 minutes (almost 4 hours, as shown in Table 1), of which 117
minutes correspond to the train set, 33 minutes to the validation set
and 83 minutes to the test set.

2In train/validation we favoured the location with more events (L1) but
other fold schemes could be implemented using the metadata information.
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Figure 2: Total time for each class in the dataset. The first two graphs correspond to the basic levels, and the third one to the subordinate level.

3.2. Annotation

The ELAN [17] software was used to manually annotate the record-
ings of the dataset. The software allows the user to simultaneously
inspect several audio and/or video recordings and produce annota-
tions time–aligned to the media. During the annotation process the
software session displayed the audio waveform, the video record
and the spectrogram of the audio signal. For the latter, an auxiliary
video file was generated for each recording, showing the spectro-
gram of the audio signal and a vertical line indicating current time
instant (as shown in Figure 3). The annotations can be created on
multiple layers, which can be hierarchically interconnected. This
feature is a perfect fit for the taxonomies’ approach defined above.

Figure 3: Screenshot of the ELAN software showing MAVD–traffic
data: at the top the video and the spectrogram (with a marker indi-
cating the instant being labeled) and at the bottom the annotations.

The annotation process was carried out in two steps. First, the
vehicle categories were labeled (e.g. CAR, BUS). Then, for each of
the marked segments, the labels of the component categories (e.g.
ENGINE IDLING) were annotated to form the subordinate level. Fig-
ure 2 shows the total duration of the events for the three category
types. Note that the dataset is highly unbalanced, especially the sub-
ordinate level, being CAR/WHEEL ROLLING the predominant class.

4. EXPERIMENTS AND RESULTS

4.1. Experiments

We devised two different experiments to provide a baseline of the
SED performance on the MAVD–traffic dataset. For the first ex-
periment, we used a Random Forest classifier with the acoustic
features defined as follows. We extracted 20 mel–frequency cep-
stral coefficients (MFCC) using the energy in 40 mel bands. The

MFCCs were calculated in frames of 40 ms overlapped 50% and us-
ing a Hamming analysis window. Besides, first and second deriva-
tives were calculated (∆MFCC,∆2MFCC), to describe the tempo-
ral variations of the coefficients. The features were computed with
librosa (version 0.6.1) [18] and the Random Forest models were
implemented with scikit-learn (version 0.17) [19].

For the second experiment, we used the convolutional neural
network for SED proposed by Salamon et. al in [9] (S–CNN). The
input of this network is a one–second length mel–spectrogram and
has three convolutional layers followed by three fully–connected
layers. The final layer is a sigmoid that performs the classification
task (the number of units is equal to the number of classes). First
we trained the S–CNN model with the URBAN–SED dataset using
the same strategy used in [9]. Then, we used a fine–tuning strategy
in order to specialize the network to the MAVD–traffic dataset. We
replace the last sigmoid layer of the network to accomplish the clas-
sification task of the MAVD-traffic dataset. The parameters of the
other layers of the network were kept unchanged during the fine–
tuning training process. The S–CNN model was implemented in
keras (version 2.2.0) [20] using tensorflow (version 1.5.0) [21].

4.2. Metrics

The performance measures typically used for the SED problem are:
F–score (F1) and Error Rate (ER), on a fixed time grid [22]. The
detected sound events are compared with the ground–truth in one–
second length segments. Based on the number of false positives
(FP ) and false negatives (FN ), the values of the precision (P ) and
recall (R) are computed. Then, the F–score (F1) is calculated as:

F1 =
2PR

P + R
=

2TP

2TP + FN + FP
. (1)

The error rate (ER) is calculated in terms of insertions I(k),
deletions D(k) and substitutions S(k) in each segment k. A substi-
tution is defined as the case in which the system detects an event in a
segment but with the wrong label. This corresponds to a simultane-
ous FP and FN for the segment. The remaining FP not included
in the substitutions are considered insertions and the remaining FN
as deletions. Finally, the ER is calculated considering all errors as:

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)

∑K
k=1 N(k)

, (2)

where K is the total number of segments and N(k) is the number
of active classes in the ground-truth at segment k [8, 22].

The values of F1 and ER are usually calculated globally over
the full set of segments and classes simultaneously. They can also
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Figure 4: Comparison of the SED results for both S-CNN and Random Forest systems applied to the MAVD–traffic dataset. The performance
is shown at the basic and subordinate levels for the different classes and for the three discussed metrics: Global, Average and Weighted sum.

be calculated restricted to each class and then averaged, which are
denoted as F̄1 and ĒR respectively. This average is calculated as:

M̄ =
1

C

C∑

c=1

Mc, (3)

where C is the number of classes and Mc is the metric for class c.
These global metrics can bias the SED algorithms to detect only

the majority class. This is illustrated by the results of DCASE chal-
lenges 2016 and 2017, in which the algorithms that obtained better
global results actually detect only the majority class [6, 14].

We aim to improve these evaluation metrics (ER and F1) in
the case of multi–class SED systems trained with very unbalanced
data, by increasing the importance of detecting the minority classes.
To do so, we propose a weighted sum of the metric values as,

M̂ =

C∑

c=1

wcMc, wc =
1/Nc∑C
j=1 1/Nj

(4)

where Nc is the number of active segments for class c, and wc is the
weight for each class, which is designed to give more importance to
the minority classes. Note that wc increases when Nc decreases, as
expected. The sum in the denominator ensures that

∑
c wc = 1.

4.3. Results

We trained the Random Forest and the S–CNN models for the three
class levels (vehicles, components and subordinate) and obtained
the results shown in Figure 4 and in Table 2. Note that the S–CNN
models tend to classify only the majority class while yielding quite
good results for the global ER and F1 metrics, as discussed in Sec-
tion 4.2. On the other hand, the weighted sum metrics, ÊR and F̂1,
clearly penalize the detection of only the majority class. The Ran-
dom Forest models perform better in detecting the minority classes
(see the BUS class), reaching higher values of the weighted sum
metrics. The source code for training the models and reproducing
these results on the MAV-traffic dataset is publicly available.3

3https://github.com/pzinemanas/MAVD-traffic

Global Weighted sum
Level Model ER F1(%) ÊR F̂1(%)

Vehicles RF 0.54 63.1 0.71 38.2
S–CNN 0.51 55.5 0.97 8.70

Components RF 0.49 69.0 0.80 24.6
S–CNN 1.17 56.2 1.03 5.35

Subordinate RF 0.78 36.1 0.96 1.98
S–CNN 0.70 38.9 1.00 0.17

Table 2: Results for Random Forest (RF) and S-CNN using the
original (Global) and the proposed (Weighted sum) metrics.

5. CONCLUSION

In this work a new dataset for SED in urban environments is
described and publicly released.4 The dataset focuses on traffic
noise and was generated from real recordings in Montevideo city.
Apart from audio recordings it, also includes synchronized video
files.5 The dataset was manually annotated using an ontology pro-
posed in this work, which combines two taxonomies (vehicles and
component–action pairs) for a detailed description of traffic noise
sounds. Since the taxonomies follow a hierarchy they can be used
with different levels of detail. The performance of two SED sys-
tem is reported as a baseline for the dataset. Some considerations
are given regarding the evaluation metrics for class–unbalanced
datasets. In future work, we will increase the size of the dataset, by
including other locations with different levels of traffic activity. We
also plan to address urban soundscapes in which other noise sources
are predominant, such as those related to social, construction or in-
dustrial activities. In addition, image processing techniques will be
applied to the video files to develop a multi–modal SED system.

4Available from Zenodo, DOI 10.5281/zenodo.3338727
5In this release, the video files are available in low resolution as we are

anonymizing them, after which they will be available in high resolution.
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