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ABSTRACT

In this paper, we address the problem of detecting previously unseen
anomalous audio events, when the training dataset itself does not
contain any examples of anomalies. While the traditional density
estimation techniques, such as Gaussian Mixture Model (GMM)
showed promise in past for the problem at hand, recent advances
in neural density estimation techniques, have made them suitable
for anomaly detection task. In this work, we develop a novel neural
density estimation technique based on the Group-Masked Autoen-
coder, that estimates the density of an audio time series by taking
into account the intra-frame statistics of the signal. Our proposed
approach has been validated using the DCASE 2020 challenge
dataset (Task 2 - Unsupervised Detection of Anomalous Sounds
for Machine Condition Monitoring). We demonstrate the effective-
ness of our approach by comparing against the baseline autoencoder
model, and also against recently proposed Interpolating Deep Neu-
ral Network (IDNN) model.

Index Terms— Masked Autoencoder, Density Estimation,
Anomaly Detection

1. INTRODUCTION

1.1. Background

Anomaly Detection is a problem of detecting anomalous data points
that are significantly different from the normal operation data. In
audio modality, anomaly detection has a number of important ap-
plications. For example, detecting unusual events using audio can
nicely complement video based approaches. This is especially true
in cases where there is not sufficient illumination, or in the presence
of visual occlusions where the performance of video surveillance is
impaired.

Most of the current literature we have seen on audio scene mon-
itoring systems [1, 2], propose fully supervised learning methods:
which require labeled examples of anomalous sounds.

In real-world scenarios, actual anomalous sounds rarely occur
and have very diverse characteristics. Therefore, it is impossible to
collect an exhaustive patterns of anomalous sounds to train a su-
pervised anomaly detection system. This magnifies the need of an
unsupervised audio anomaly detection system which can be used to
detect unknown anomalous sounds, which have not been observed
in the given training data.

1.2. Related Work

Unsupervised anomaly detection problem is typically solved by first
learning a model or a probability distribution over normal data [3].
Then during testing, this pre-trained model is exploited to determine

if a test sample belongs to the learned distribution/model or not. In
the literature, several different model choices have been used, and
majority of these approaches rely on a Deep Auto Encoder (AE)
architecture. The main working principle of these approaches lies
in training an AE using normal/expected data, and during testing
checking if the network is struggling to decode the encoded test
data accurately. I.e., if the system produces a high reconstruction
error compared to some threshold, it is then considered anomalous
input. In [4], the authors propose a denoising AE structure using
both feedforward units and LSTM units for acoustic anomaly de-
tection task. In [5], authors propose a convolutional AE on Mel-
spectrograms to detect anomalies in the context of industrial plants
and processes. Recently, in [6] authors propose a variant of AE ar-
chitecture: Interpolating Deep Neural Network (IDNN), where the
proposed model utilizes multiple frames of a spectrogram whose
center frame is removed as an input, and it predicts an interpola-
tion of the removed frame as an output. Anomalies can be detected
based on an interpolation error, that is the difference between the
predicted frame and the true frame. Authors show that, IDNN per-
forms significantly better than a baseline AE for machine condition
monitoring task, specially for non-stationary sounds.

Another line of work focuses on density estimation methods
for anomaly detection. Unsupervised methods model the distribu-
tion of all the normal samples during training, and during inference,
regard samples in the pdf regions with low probabilities as anoma-
lies. In earlier works, Unimodal Gaussian [7], and Gaussian Mix-
ture models [8] were used to model the normal data distribution.
More recently, neural density estimation techniques, such as Nor-
malizing Flow [9] have been used to solve the problem in hand.
Neural density estimators can readily provide exact density evalu-
ations unlike generative modeling approaches—such as Variational
Auto-Encoder (VAE) [10, 11] and Generative Adversarial Networks
(GANs) [12]. This makes them a popular choice for anomaly detec-
tion application, where we are more interested in evaluating exact
densities during inference to detect anomalous points, rather than
generating synthetic data.

1.3. Contribution

There are primarily two families of neural density estimators that
are both flexible and tractable: autoregressive models [13] and nor-
malizing flows [14]. Motivated from the success of Autoregressive
models in modeling audio data [15, 16], in this work we focus on
autoregressive model based density estimators. These models usu-
ally decompose the joint density as a product of conditionals over
individual dimensions, and model each conditional as a paramet-
ric density where a neural network outputs the parameters of that
density. Our work builds on one such approach named: Masked
Autoencoder for Density Estimation (MADE) [18]. Like all au-

51



Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

toregressive models, MADE is also very sensitive to the order of
the variables. In this work we address this issue for audio anomaly
detection task, by developing a novel Group Masked Autoencoder
(Group MADE) architecture where the joint distribution can be de-
composed as conditionals over groups/frames instead of individual
dimensional conditional. We model each conditional by either a
Gaussian distribution (Group MADE-G) or a mixture of Gaussians
(Group MADE-MOG). We also show that, with suitable choice of
group ordering, our approach can be interpreted as the probabilis-
tic version of recently proposed state-of-the-art approach for audio
anomaly detection: IDNN [6]. Finally, we demonstrate the effec-
tiveness of our proposed approach by presenting extensive experi-
mental results using the publicly available DCASE2020 Challenge
Task 2 dataset [17].

The rest of the article is organized as follows: In Section 2,
the proposed method is presented in detail. In Section 3, a brief
description of challenge dataset, that have been used in this article
is given. In Section 4, we present evaluation results of our proposed
method and other competing methods over challenge dataset, and
finally Section 5 concludes the paper and talks about some future
research directions.

2. PROPOSED APPROACH

Our method builds on previous work on Masked Autoencoder for
Distribution Estimation (MADE). We provide a brief description of
MADE in the following subsection. More details about MADE can
be found in original publication [18].

2.1. Masked Autoencoder for Distribution Estimation

In [18], authors propose a simple way of adapting an autoencoder
architecture to develop a competitive and tractable neural density
estimator. The key idea lies in masking the weighted connec-
tions between layers of a standard autoencoder to convert it into
a tractable density estimator. Authors show that by designing ap-
propriate masks, the output of the autoencoder satisfies the autore-
gressive property for a given ordering of inputs, i.e., each input di-
mension is reconstructed solely from the dimensions preceding it
in the ordering. Multiple layers with non linearity can be added in
this structure, which will result in a highly capable neural density
estimator.

By using MADE, density of an input vector x is calculated by
means of the decomposition according to the probability chain rule.
In an autoregressive setting this will be,

p(x) =
D∏

d=1

p(xd|x<d) (1)

Hence, in the autoencoder output, each dimension can be in-
terpreted as one of the D conditional probability distributions as
shown above, and each output unit x̂d only depends on the previous
input units, x<d, and not the other units, x≥d = [xd, ...., xD]T .
This model is trained by minimizing the negative log likelihood for
all training data points,

Cost = − log p(x) =
D∑

d=1

− log p(xd|x<d). (2)

2.2. Group Masked Autoencoder for Distribution Estimation

For the audio anomaly detection problem, we operate in log mel-
spectrogram feature space. Instead of using each frame as an input
to the network, we concatenate T frames to provide more tempo-
ral context to the model. Let’s assume that, there are M num-
ber of mel bands, hence, the input space is T × M dimensional.
Since for this task, we are interested in the autoregressive ordering
across frames (not across each dimension of the input), we design a
Group MADE architecture, where the joint distribution can be de-
composed as conditionals over groups/frames, instead of individual
dimensional conditional. Also, note that in our architecture, the mel
bins in one frame are conditionally independent when conditioned
on all previous frames.

Let’s assume, that one input sample can be represented as
t = [ti+1, ti+2, ..., ti+T]

T ∈ R(T×M)×1, where ith frame is
ti ∈ RM×1. Hence the joint density will be decomposed as,

p(t) =

T∏
i=1

p(ti|t<i) =

T∏
i=1

M∏
j=1

p(tij |t<i) (3)

Hence, all the mel bins in an output frame ti depends on all the mel
bins from previous frames but not on other units, i.e., not on mel
bins of the i th frame, or on the mel bins of the future frames. Be-
cause of this group masking nature, we name our approach as Group
Masked Autoencoder for Density Estimation (Group MADE). To
compare against the baseline model provided by DCASE 2020 chal-
lenge task 2 [17], we set T = 5 frames, and M = 128 mel bands.

So far, we have assumed that the conditionals modeled by
Group MADE were consistent with the causal frame ordering, but
in this work we use, 3 different orderings of the input dimensions,
and use the ensemble of these three models to compute the anomaly
score.

• Ordering 1 (IDNN): In this case we predict the middle frame
conditioned on 4 other frames, i.e.,

p(t) = p(t3|t1, t2, t4, t5)p(t1, t2, t4, t5) (4)

Note that this ordering represents a probabilistic counterpart of
recently proposed start-of-the-art IDNN [6] approach, which
predicts the middle frame, conditioned on rest of the 4 frames.

• Ordering 2 (LR): In this case we use causal forward AR or-
dering i.e.,

p(t) =

5∏
i=1

p(ti|t<i) (5)

• Ordering 3 (RL): In this case we use backward AR ordering
i.e.,

p(t) =
5∏

i=1

p(ti|t>i) (6)

In [18], authors have only considered binary observations, and
in this work we extend that to real valued observations. In our first
approach we parametrize each conditional distribution as a single
Gaussian, and we name this approach as: Group MADE-G, where
the autoencoder outputs mean, variance for each Gaussian condi-
tional. In our second approach, we model each conditional as a
mixture of C Gaussians, i.e., the autoencoder outputs mean, vari-
ance and the mixture component probabilities, and we name this
approach as: Group MADE-MOG. Group MADE-G can also be

52



Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

Table 1: DCASE 2020 Task 2 Experimental Results over Dev Data

Algorithm Toy Car Toy Conveyor Fan Pump Slider Valve

Baseline 78.77 (67.58) 72.53 (60.43) 65.83 (52.45) 72.89 (59.99) 84.76 (66.53) 66.28 (50.98)
IDNN [6] 76.95 (70.01) 76.46 (62.07) 69.62 (53.55) 74.83 (62.70) 90.16 (72.54) 92.09 (75.13)
Group MADE-G (IDNN) 74.77 (67.35) 74.74 (60.34) 68.02 (53.05) 72.09 (61.66) 92.84 (77.97) 94.78 (84.23)
Group MADE-G (LR) 78.33 (65.34) 69.19 (55.01) 67.17 (52.39) 72.42 (62.26) 93.57 (81.42) 70.87 (62.61)
Group MADE-G (RL) 79.51 (68.41) 72.77 (56.66) 67.53 (52.34) 74.12 (66.23) 94.41 (83.65) 95.54 (84.65)
Group MADE-G (mean ensemble) 79.50 (68.40) 74.70 (60.30) 68.00 (53.10) 74.10 (66.20) 94.40 (83.70) 95.60 (85.50)
Group MADE-G (max ensemble) 79.51 (68.41) 74.74 (60.34) 68.02 (53.05) 74.12 (66.23) 94.40 (83.65) 95.60 (84.99)
Group MADE-MOG (IDNN) 79.07 (69.05) 75.14 (61.25) 70.26 (53.16) 74.23 (62.02) 92.71 (77.15) 92.82 (76.33)
Group MADE-MOG (LR) 78.19 (65.57) 70.37 (55.74) 68.44 (52.63) 74.51 (64.66) 93.59 (81.65) 82.38 (67.72)
Group MADE-MOG (RL) 79.74 (68.44) 73.99 (57.68) 68.28 (52.62) 74.96 (65.92) 94.00 (83.01) 93.36 (76.15)
Group MADE-MOG (mean ensemble) 80.20 (69.70) 75.10 (61.30) 70.30 (53.20) 74.96 (65.92) 94.00 (83.00) 93.36 (76.15)
Group MADE-MOG (max ensemble) 79.74 (68.44) 75.14 (61.25) 70.26 (53.16) 75.00 (66.10) 94.00 (83.01) 93.40 (76.40)

seen as a special case of Group MADE-MOG with C=1. For ex-
ample in case of Group MADE-MOG, for D dimensional input,
number of outputs for the model will be, D × C × 3. For all our
experiments we set C = 10 for Group MADE-MOG.

Figure 1: (a) Log mel spectrogram, (b) Anomaly score for baseline
model, (c) Anomaly score for Group MADE-MOG (IDNN) for an
audio clip from normal valve recording.

2.3. Construction of Masks

Above discussed orderings can be implemented by designing corre-
sponding masks. To explain more, let’s consider the causal ordering
case, i.e., Ordering 2. This can be implemented by making sure
that there is no computational path between output frame t̂i and
any of the input frames that come after it, t̂i+1, ...., t̂i+5. This will
guarantee the conditional represented by the output frame t̂i only
depends on the preceding frames t<i. As proposed in [18], conve-
nient way of zeroing connections is to elementwise multiply weight
matrices by a binary mask matrix. By setting the corresponding
binary mask matrix elements to zero, we can remove our desired
connections, and achieve the previously discussed orderings. We

Figure 2: (a) Log mel spectrogram, (b) Anomaly score for baseline
model, (c) Anomaly score for Group MADE-MOG (IDNN) for an
audio clip from anomalous valve recording.

follow the similar mask construction procedure as described in [18],
with the difference being, masks are formed to zero out connections
between groups instead of individual units.

2.4. Anomaly Scoring and Ensembling

During inference, we use the negative log likelihood as anomaly
score for each input instance, i.e., 5 frames. Finally we average the
anomaly scores for each file (10 secs segment), to provide a scalar
anomaly score for each recording file.

To ensemble across multiple Group MADE orderings, we trans-
form the anomaly scores of each model into a standardized scale,
before combining them. The standardization transformation for any
given model is applied in a per-machine ID fashion, by computing
the mean and variance of its anomaly scores over the training data
for that machine ID. The anomaly scores are then transformed to
have zero mean and unit variance over the training data of that ma-
chine ID. Standardized anomaly scores across different models are
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then combined using mean or max ensembling.

3. DATASET

We use the publicly available development dataset released as part
of DCASE2020 Task 2: Unsupervised Detection of Anomalous
Sounds for Machine Condition Monitoring. The data used for
this task comprises parts of ToyADMOS [19] and the MIMII [20]
Dataset consisting of the normal/anomalous operating sounds of six
types of toy/real machines. Each recording is a single-channel (ap-
proximately) 10-sec length audio that includes both a target ma-
chine’s operating sound and environmental noise. The following
six types of toy/real machines are used in this task:

• Toy-car (ToyADMOS)
• Toy-conveyor (ToyADMOS)
• Valve (MIMII Dataset)
• Pump (MIMII Dataset)
• Fan (MIMII Dataset)
• Slide rail (MIMII Dataset)

The sampling rate of all signals has been converted to 16 kHz. Chal-
lenge organizers also add environmental noise for different SNRs to
the target machine sound, and only noisy recordings are provided to
increase the difficulty of the problem.

4. EXPERIMENTAL RESULTS

4.1. Setup

The proposed Group MADE model is trained using the negative log
likelihood as cost function, using all the normal training data across
all IDs for a specific machine. During inference, we use the negative
log likelihood as anomaly score for each test sample. We use a fully
connected network as the architecture where the number of hidden
layers and the corresponding hidden units in each layer follow this
structure: [128, 128, 128, 128, 32, 128, 128, 128, 128]. Finally the
output layer has 640 × 2 = 1280 units for Group-MADE-G and
640 × 10 × 3 = 19200 units for Group-MADE-MOG. We use
Adam optimizer with 0.001 learning rate for training.

We compare our proposed method with the baseline autoen-
coder model provided by the challenge organizers. We also imple-
ment recently proposed IDNN [6], model using the same architec-
ture as Group MADE models, i.e., hidden units in each layer follows
this structure: [128, 128, 128, 128, 32, 128, 128, 128, 128].

Each 10s input file from training data is split into frames of
length 64ms, with hop length of 32ms between frames. 1024-FFT
and 128 mel bins are used to featurize each frame. We use the
log mel-band energies as our input feature space and 5 frames are
concatenated, resulting in 5× 128 = 640 dimensional input.

4.2. Results

In Table 1, we report the evaluation results of all competing algo-
rithms along with proposed Group MADE models, over the devel-
opment set of DCASE 2020 challenge Task 2. All the models are
evaluated with the area under the receiver operating characteristic
(ROC) curve (AUC) and the partial-AUC (pAUC). The pAUC is
an AUC calculated from a portion of the ROC curve over the pre-
specified range of interest. In our metric, the pAUC is calculated
as the AUC over a low false-positive-rate (FPR) range [0, p], and

following the challenge we also set p = 0.1. AUC and pAUC have
been reported for all 6 machines averaged across IDs.

We observe that autoregressive density estimator based ap-
proaches show most improvement over the baseline deep autoen-
coder approach for non-stationary sounds i.e. for valve and slide
rail. Similar trend has been noted by the authors in [6] for IDNN.
We also note that, Group-MADE-MOG (IDNN) performs better
than baseline model for all 6 machines, and it also outperforms
IDNN for 4 out of 6 machines in our experiments.

Fig. 1 shows the log mel-spectrogram (a), anomaly score pro-
duced by baseline autoencoder (b), and anomaly score produced
by Group MADE-MOG (IDNN) model for an audio clip recording
measured from a normal operating valve. Fig. 2 shows the log mel-
spectrogram (a), anomaly score produced by baseline autoencoder
(b), and anomaly score produced by Group MADE-MOG (IDNN)
model for an audio clip recording measured from a faulty valve. It
is evident from these two figures, that proposed model captures the
anomalous sound better than baseline by producing a high anomaly
score for faulty valve recording.

5. CONCLUSION

We have presented an unsupervised approach for audio anomaly
detection, using a novel Group Masked autoencoder based density
estimation approach. Previously proposed autoencoder based ap-
proaches solve the problem by modeling the normal audio record-
ings, and they detect anomalous sounds only when the reconstruc-
tion/model mismatch error is above a certain threshold. In this
work, we modify the autoencoder network to determine the joint
distribution where the outputs are the conditional probabilities over
T frames. We extend the previously proposed MADE to model de-
pendencies across time/frames by introducing the concept of group
masking. We also show, how the recently proposed state-of-the-art
IDNN is a special case of Group-MADE and how its performance
can be further improved by modeling each conditional as a mixture
of Gaussians.
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