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ABSTRACT

This paper presents the details of Task 1 Acoustic Scene Classifica-
tion in the DCASE 2020 Challenge. The task consisted of two sub-
tasks: classification of data from multiple devices, requiring good
generalization properties, and classification using low-complexity
solutions. Each subtask received around 90 submissions, and most
of them outperformed the baseline system. The most used tech-
niques among the submissions were data augmentation in Subtask
A, to compensate for the device mismatch, and post-training quan-
tization of neural network weights in Subtask B, to bring the model
size under the required limit. The highest classification accuracy on
the evaluation set in Subtask A was 76.5%, compared to the base-
line performance of 51.4%. In Subtask B, many systems were just
below the 500 KB size limit, and the maximum classification accu-
racy was 96.5%, compared to the baseline performance of 89.5%.

Index Terms— Acoustic scene classification, multiple devices,
low-complexity, DCASE Challenge

1. INTRODUCTION

The goal of acoustic scene classification is to classify a test audio
recording into one of the provided predefined classes that charac-
terizes the environment in which it was recorded. Acoustic scene
classification is a popular task of the DCASE Challenge, and brings
new variations of a supervised classification task each year. In all
previous editions, this task has attracted the highest number of par-
ticipants among the available tasks.

Recent years have seen a boom in deep-learning based solutions
for various classification problems [1, 2], also obvious in the last
few editions of the DCASE Challenge. While in 2016 just 22 of the
48 submissions used neural networks [3] and many other methods
had top performance [4], in 2019 only five of the 146 systems sub-
mitted to the acoustic scene classification subtasks did not include a
deep learning component [5]. Generally, deep learning algorithms
require large amounts of data for best performance, and the effort to
produce more data for the task has resulted in gradual extension of
the problem, from a classical textbook example [3, 6, 7] to domain
adaptation due to mismatched devices [8, 9], and open-set classifi-
cation [5, 10].

Deep learning solutions are sensitive to mismatch between
training and testing data, which is often present in realistic scenar-
ios because of the large variety of devices available for recording
audio. While in previous editions of the challenge the device mis-
match was treated from the point of view of domain adaptation and
targeted for a small number of test devices, it is realistic to assume
that any method tested in a real-world scenario would have to face
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Figure 1: Acoustic scene classification in DCASE 2020 Challenge.
Overview of the two tasks.

a much higher number of devices, many of which are not avail-
able at training stage. Furthermore, because the main application
area of acoustic scene classification is context-aware devices, where
the algorithms should be running on devices with limited compu-
tational capacity, taking into account computational limitations is
another important point for real-world applications. The acoustic
scene classification task in DCASE 2020 Challenge brings these
two topics into the spotlight.

In DCASE 2020 Challenge, the acoustic scene classification
task comprises two different subtasks, which require system de-
velopment for two different situations. Subtask A: Acoustic Scene
Classification with Multiple Devices requires classification of data
from real and simulated devices, and is aimed for developing sys-
tems with very good generalization properties across a large number
of different devices. For this subtask, the challenge provides new
data consisting of real and simulated audio recordings for mobile
devices. Subtask B: Low-Complexity Acoustic Scene Classification
requires classification of data from a single device, and is aimed for
developing low-complexity solutions for the problem. In this sub-
task, the challenge imposes a maximum model size as a proxy for
estimating the model complexity at test time.

This paper introduces the two acoustic scene classification tasks
and their results and is organized as follows: Sections 2 and 3 in-
troduce the setup, dataset and baseline system for subtasks A and
B, respectively. Section 4 presents the challenge results for both
subtasks, and an analysis of selected submissions. Finally, Sec-
tion 5 presents conclusions and future perspectives on this task for
upcoming editions of the challenge.
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2. ACOUSTIC SCENE CLASSIFICATION WITH
MULTIPLE DEVICES

This subtask is concerned with the basic problem of acoustic scene
classification, in which it is required to classify a test audio record-
ing into one of ten known acoustic scene classes. A specific feature
for this edition is generalization across a number of different de-
vices, enforced through use of audio data recorded and simulated
with a variety of devices.

2.1. Dataset and performance evaluation

A new dataset was created for this task, called TAU Urban Acous-
tic Scenes 2020 Mobile [11, 12]. The dataset is based on the TAU
Urban Acoustic Scenes 2019 dataset, containing recordings from
multiple European cities and ten different acoustic scenes [5]. The
new dataset contains the four devices used to record simultaneously
(A, B, C, and D), and additional synthetic devices S1-S11 simulated
using audio recorded with device A which is a high quality binaural
device.

Simulated recordings were created using a dataset of impulse
responses (IR) measured for multiple angles using mobile devices
other than the ones already in the dataset (B, C, D). To simulate
the recording from a device S, audio recorded with device A was
processed through convolution with the device-specific IR, followed
by a dynamic range compression with device-specific parameters.
The IR angle was randomly selected among the available ones, and
is location-specific, to simulate the case when a long recording has
been captured with device S in a certain position.

The development set contains data from ten cities and nine
devices: three real devices (A, B, C) and six simulated devices
(S1-S6). Data from devices B, C and S1-S6 consists of randomly
selected segments from the simultaneous recordings, therefore all
overlap with the data from device A, but not necessarily with each
other. The total amount of audio in the development set is 64 hours,
of which 40 hours are from device A. Audio was provided in single
channel 44.1 kHz 24-bit format. The dataset was provided with a
training/test split in which 70% of the data for each device is in-
cluded for training, 30% for testing; some devices appear only in
the test subset. Complete details are presented in Table 1.

The evaluation dataset contains 33 hours of audio from all 12
cities, ten acoustic scenes, 11 devices. Five of the 11 devices from
the evaluation set are unseen in training (not available in the devel-
opment set): real device D and simulated devices S7-S11. Device
and city information is not provided in the evaluation set, as the
systems are expected to be robust to different devices.

Evaluation of submissions was performed using two metrics:
accuracy and multi-class cross-entropy. Accuracy was calculated as
macro-average (average of the class-wise accuracy for the acoustic
scene classes). Multi-class cross-entropy (log loss) was used in or-
der to have a metric which is independent of the operating point.
Ranking of the systems was be done by accuracy.

2.2. Baseline system results

The baseline system provided for the task uses Open L3 embed-
dings as feature representation, followed by two fully-connected
feed-forward layers [13]. The system uses a window size of one
second for analysis, with a hop size of 100 ms, input representation
through 256 mel filters, content type music, and an embedding size
of 512. This is followed by two fully connected layers of 512 and
128 hidden units, respectively. The learning is performed for 200

Table 1: Distribution of devices among training and test subsets in
the dataset. Some devices are present only in the test set to simulate
real situations of encountering an unseen device at the usage end.

Device Dataset Cross-validation setup

Name Type Total
length

Total
seg

Train
seg

Test
seg

Unused
seg

A Real 40h 14400 10215 330 3855
B,C Real 3h*2 1080*2 750*2 330*2
S1,S2,S3 Sim. 3h*3 1080*2 750*3 330*3
S4,S5,S6 Sim. 3h*3 1080*3 - 330*3 750*3

Total 64h 23040 13965 2970 6105

epochs with a batch size of 64, and data shuffling between epochs,
using Adam optimizer [14] with a learning rate 0.001. Model selec-
tion is performed using validation data consisting of approximately
30% of the original training data. Model performance after each
epoch is evaluated on the validation set, and the best performing
model is selected.

The overall performance of the baseline system on the develop-
ment set is 54.1%. The baseline system does not have any mecha-
nism for explicitly dealing with the device mismatch, which is ev-
ident from the results: device-wise system performance decreases
according to the amount of data available in training. Highest ac-
curacy is obtained on device A (70.6%), while the other devices for
which a small amount of data is available in training provide about
50-60% accuracy; the lowest accuracy is observed for the unseen
devices (39-48%).

3. LOW-COMPLEXITY ACOUSTIC SCENE
CLASSIFICATION

3.1. Description

This subtask is concerned with classification of audio into three ma-
jor acoustic scene classes, with focus on low complexity solutions
for the classification problem in term of model size, and uses audio
recorded with a single device (device A).

3.2. Dataset and performance evaluation

A new dataset was created for this task, called TAU Urban Acous-
tic Scenes 2020 3Class [15, 16], based on TAU Urban Acoustic
Scenes 2019. The ten acoustic scenes from the original data were
grouped into three higher level acoustic scene classes as follows:
indoor (airport, indoor shopping mall, and metro station), outdoor
(pedestrian street, public square, street with medium level of traffic,
and urban park), and transportation (travelling by bus, travelling
by tram, and travelling by underground metro). This dataset con-
tains audio recorded with a single device (device A), provided in
binaural, 48 kHz 24-bit format. The development dataset contains
audio data from ten cities, provided with a training/test split. The
amount of audio in the development dataset is 40 hours. The eval-
uation set contains a total of 30 hours of audio data, recorded in
12 cities (two cities not encountered in training). Evaluation was
be performed similarly to Subtask A, using average accuracy across
the three acoustic scene classes, and multi-class cross-entropy. The
systems were ranked by the average accuracy.
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Table 2: Model size for the two subtask baselines and their performance on Subtask B.

System Implementation details Accuracy Log loss Audio embeddings Ac. model Total size

Subtask B Baseline Log mel-band energies + CNN
(2 CNN layers + 1 fully-connected)

87.3 %
(± 0.7)

0.43
(± 0.04) - 450.1 KB 450.1 KB

Subtask A Baseline OpenL3 + MLP
(2 layers, 512 and 128 units)

89.8 %
(± 0.3)

0.26
(± 0.00) 17.87 MB 145.2 KB 19.12 MB

Table 3: Selected systems submitted for Subtask A. Top 10 teams, best system per team.

System # Accuracy Log loss Seen devices Unseen devices System summary, approach for device mismatch

Suh ETRI 3 1 76.5 % 1.21 78.1 % 74.6 % ResNets
Hu GT 3 3 76.2 % 0.89 77.5 % 74.7 % Two-stage classification, data augmentation
Gao UNISA 4 8 75.2 % 1.23 77.0 % 73.1 % ResNets, domain adaptation
Jie Maxvision 1 10 75.0 % 1.20 76.5 % 73.2 % ResNet with attention mechanism (single model)
Koutini CPJKU 3 13 73.6 % 1.20 76.8 % 69.8 % ResNets, domain adaptation, Rf reg.
Helin ADSPLAB 1 14 73.4 % 0.85 76.2 % 70.1 % CNNs (pretrained), multiple decision schemes
Liu UESTC 1 16 73.2 % 1.30 74.3 % 71.9 % ResNets using spectrogram decompositions
Zhang THUEE 2 17 73.2 % 1.96 75.8 % 70.0 % ResNets and SegNets, spectrum correction
Lee CAU 4 20 72.9 % 0.91 75.5 % 69.8 % CNNs
Liu SHNU 4 26 72.0 % 3.16 75.8 % 67.5 % ResNet and CNN, data augmentation

Baseline 51.4 % 1.90 63.1 % 37.2 % OpenL3, single MLP model

3.3. System complexity requirements

This task imposed a classifier complexity expressed in terms of
model size on disk. The chosen limit was 500 KB for the non-zero
parameters, which means 128 K parameters in the 32-bit float data
type (128000 parameters * 32 bits per parameter / 8 bits per byte
= 512000 bytes = 500 KB). This approach for limiting the model
size allows participants some flexibility in design, for example min-
imizing the number of non-zero parameters of the network in order
to comply with this size limit (sparsity), or quantization of model
parameters in order to use lower number of bits.

The computational complexity of the feature extraction stage
is not included in the system complexity estimation. Even though
feature extraction is an integral part of the system complexity, there
is no established method for estimating and comparing complex-
ity of different feature extraction implementations, therefore we do
not take it into consideration, in order to keep the complexity esti-
mation straightforward across approaches. Some special situations
for feature representations apply. Some implementations may use
a feature extraction layer as the first layer in the neural network -
in this case the limit is applied only to the following layers, in or-
der to exclude the feature calculation as if it were a separate pro-
cessing block. However, in case of embeddings (e.g. VGGish [17],
OpenL3 [13] or EdgeL3 [18]), the network used to generate the em-
beddings counts in the number of parameters. Additionally, batch
normalization layers are skipped from the model size calculation.

3.4. Baseline system results

The baseline system for the task implements a convolutional neural
network (CNN) based approach, similar to the DCASE 2019 Task
1 baseline [5]. It uses 40 log mel-band energies, calculated with an
analysis frame of 40 ms and 50% hop size, to create an input shape
of 40 × 500 for each 10 second audio file. The neural network
consists of two CNN layers and one fully connected layer, followed

by the softmax output layer. Learning is performed for 200 epochs
with a batch size of 16, using Adam optimizer and a learning rate
of 0.001. Model selection and performance calculation are done
similar to the Subtask A system. The model size of the system is
450 KB. For comparison, Table 2 presents the model size of the
baseline system from Subtask A, together with the performance of
both systems on Subtask B.

4. CHALLENGE RESULTS

This section presents the challenge results and a short analysis of
the submitted systems. The task was very popular in this edition
too, with 92 systems from 28 teams submitted to Subtask A and 86
systems from 30 teams submitted to Subtask B. This edition had the
largest number of participants to the Acoustic Scene Classification
among all editions, with a very balanced interest in both problems.
The challenge website contains full details on the systems perfor-
mance and characteristics 1.

4.1. Subtask A results and analysis

The highest accuracy among the 92 systems submitted for this sub-
task was 76.5%, for the system of Suh ETRI [19], compared to the
baseline system at only 51.4%. Table 3 presents few details for the
best system of the top 10 ranked teams. The official system rank is
presented along with a breakdown of accuracy according to device
categories. All systems in Table 3 except Jie Maxvision 1 are en-
sembles of classifiers. Most systems were based on mel energies as
feature representation (65 of all submissions) , in some cases com-
bined with CQT, Gammatone, HPSS, and even with MFCC. All
except one system were using deep learning architectures based on
e.g. ResNet and dilated convolution, and 51 of the systems report

1http://dcase.community/challenge2020/task-acoustic-scene-
classification
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Table 4: Selected systems submitted for Subtask B. Top 10 teams, best system per team.

Team # Accuracy Log loss Size Param Weights Notes

Koutini CPJKU 2 1 96.5 % 0.10 483.5 KB 345k float16 pruning, post-training quantization
Hu GT 3 3 96.0 % 0.12 490.0 KB 122k int8 post-training quantization
McDonnell USA 3 4 95.9 % 0.11 486.7 KB 3M 1-bit
Suh ETRI 3 11 95.1 % 0.27 413.0 KB 207k float16 sparse connectivity models, ensemble
Chang QTI 1 12 95.0 % 0.22 491.2 KB 601k float16 pruning, weight sharing across layers
Wu CUHK 4 14 94.9 % 0.21 299.3 KB 153k float16 depth-wise separable CNN
Lee CAU 2 23 93.9 % 0.15 494.2 KB 126k float32 slim model
Naranjo-Alcazar Vfy 1 24 93.6 % 0.20 496.3 KB 127k float32 slim model
Kwiatkowska SRPOL 2 27 93.5 % 0.16 421.0 KB 107k float32 depth-wise separable CNN, ensemble
Yang UESTC 3 26 93.5 % 0.22 258.0 KB 119k float16 slim model

Baseline 89.5 % 0.40 450.1 KB 115k float32 slim model

employing ensembles. A very large proportion of the submitted sys-
tems use at least mixup [20] as data augmentation method (71 of all
submissions); many systems used multiple forms of data augmen-
tation including resizing and cropping, spectrum correction, pitch
shifting, and SpecAugment, which seems to compensate for the de-
vice mismatch. Only a handful of systems using explicit domain
adaptation.

All systems have significantly higher performance on device A,
to which the large majority of training data belongs. Accuracy on
devices seen in the training (A, B, C, S1, S2, S3) is also somewhat
larger than on unseen ones (D, S7, S8, S9, S10), but the difference is
not as large as observed in the case of the baseline system. The gen-
eralization properties of the systems are good, with small difference
in performance between the development and evaluation datasets.

Log-loss shows the uncertainty of the classifier, and it is lowest
among all 90 systems (0.755) for Liu UESTC [21], but not for their
best system in terms of accuracy (therefore not the system in Ta-
ble 3). From the systems in Table 3, Hu GT [22] has much smaller
log-loss than the top system, indicating that the top system is more
uncertain of its decisions, even though they have the same accu-
racy (accuracies of the two systems are within the 95% confidence
interval).

4.2. Subtask B results and analysis

The highest accuracy among the 86 submitted systems for this sub-
task was 96.5%, compared to an accuracy of 89.5% for the baseline
system. Here, the core task was to find low-complexity solutions for
a classification problem that was not too difficult. In terms of log-
loss, the systems in this subtask are more confident in their decisions
than the ones in Subtask A, with the best log-loss value belonging
to the top system.

Details about performance and system choices for the best sys-
tem of the top 10 ranked teams are presented in Table 4. Many
of the submissions used deep learning architectures and imposed
restrictions on the models and their representations, such as us-
ing slim models, depth-wise separable CNNs, pruning and post-
training quantization of model weights. The top system Kou-
tini CPJKU [23] used a combination of pruning and quantization,
using 16-bit float representation for the model weights and hav-
ing a reported sparsity of 0.28 (ratio of zero-valued parameters).
A much sparser model was obtained by Chang QTI [24] through
pruning and weight sharing across layers, while many participants
used quantization and 16-bit float representations.

One solution very different from the others was presented by
McDonnell USA [25], that used a single bit per weight, and repre-
sented the model weights as −1 or +1. This kind of bit-wise neu-
ral network can be seen as an extreme form of quantization which
allows using a very large model: its reported parameter count is
3M, compared to an average of few hundreds of thousands for the
other systems. Systems that used the default 32 bit float represen-
tations opted for models specifically designed to fit in the required
limit (named ”slim” models in Table 4) [26] or depth-wise separa-
ble CNNs. It is notable that most systems in Table 4 have models
close to the maximum allowed size, except two, one that uses depth-
wise separable CNN and another one using a slim model. Overall,
the size of the models ranges from 8.8KB (ranked 82) to 499.5 KB
(ranked 53), with 47 systems having a model size over 400 KB.
In terms of number of parameters, the system by McDonnell USA
[25] is an outlier with 3M, with next largest number of parameters
being 600 k.

5. CONCLUSIONS AND FUTURE WORK

This paper presented the results of the DCASE 2020 Challenge
Task 1 Acoustic Scene Classification. The two different subtasks of-
fered in this edition were oriented towards real-world applications,
in one case robustness and generalization to multiple devices, and
in the other case the need for low-complexity solutions. A number
of solutions were presented, with data augmentation being the main
tool used for the generalization problem, while the majority of the
low-complexity solution were based on quantization of model pa-
rameters, with the top systems in each subtask using a combination
of techniques. Considering the high number of submissions, the
task was very successful. In particular, the low-complexity require-
ment attracted a very high number of participants, indicating great
interest for the topic in the academic environment in addition to in-
dustry. For the future editions, we hope to be able to provide a more
accurate and universal approach to measure model or computational
complexity, in order to establish a widely accepted methodology for
measuring characteristics of methods intended for limited-resource
devices.
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