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ABSTRACT

Sound events are crucial to discern a specific acoustic scene, which
establishes a close relationship between audio tagging and acous-
tic scene classification (ASC). In this study, we explore the role
and application of sound events based on the ASC task and propose
the use of the last hidden layer’s output of an audio tagging sys-
tem (tag representation), rather than the output itself (tag vector),
in ASC. We hypothesize that the tag representation contains sound
event information that can improve the classification accuracy of
acoustic scenes. The dual attention mechanism is investigated to
adequately emphasize the frequency-time and channel dimensions
of the feature map of an ASC system using tag representation. Ex-
periments are conducted using the Detection and Classification of
Acoustic Scenes and Events 2020 task1-a dataset. The proposed
system demonstrates an overall classification accuracy of 69.3%,
compared to 65.3% of the baseline.

Index Terms— tag representation, dual attention, acoustic
scene classification

1. INTRODUCTION

Acoustic scene classification (ASC) classifies an input recording
into one of the predefined scenes, and has been receiving increas-
ing interest. The IEEE challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE) provides a platform to facili-
tate research in related tasks with annual public datasets [1–4]. With
recent advances in deep learning, many studies have adopted deep
neural networks (DNNs) to compose an ASC system [5–7]. Var-
ious aspects have been studied, including DNN architecture, data
augmentation, frameworks (end-to-end or explicit back-end classi-
fier), and similarities between different scenes [8–12].

Among these studies, a few recent studies have focused on ex-
ploiting different tasks, such as audio tagging and sound event de-
tection (SED), related to the ASC task [13–15] (detailed in Sec-
tion 2). An audio tagging system predicts the posterior probability
of predefined sound events in the input audio recording, whereas a
SED system deduces the onset and offset of sound events in addi-
tion to the presence confirmation. Imoto et al. showed that the joint
training of SED and ASC tasks via a multi-task learning [16] frame-
work can increase the performance of the SED system [13,14]. Jung
et al. introduced a novel framework [15] that utilizes outputs of
an audio tagging system by either concatenating or applying multi-
head attention [17].
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In this study, we extend the work of [15] that uses the output
of an audio tagging system (referred as tag vector) to derive an at-
tention map for the ASC task, in several aspects. First, we analyze
that tag vectors may pose an out-of-distribution problem [18]. That
is, diverse undefined sound events that exist in an audio recording
will cause the tag vectors to convey inaccurate information. Thus,
we propose the use of the output of the last hidden layer (referred
as tag representation) instead and validate its effectiveness.

We also propose the application of a dual attention mechanism
to the feature map, one attention to the frequency-time dimension
and the other to the channel dimension, inspired by [19, 20]. We
hypothesize that the sound events, which constitute an important
information regarding the classification of particular acoustic scenes
scattered in the frequency-time and channel dimensions of a feature
map, can be emphasized. Additionally, we change the input feature
from raw waveform to Mel-spectrogram, modifying some details.
Combining several proposals, the final proposed framework of this
study trains an ASC system, in which a dual attention derived from a
tag representation is applied. The proposed system demonstrates an
overall classification accuracy of 69.3% in the DCASE2020 task1-a
fold1 configuration test set.

2. EVENT DETECTION FOR ASC

Guastavino reported that humans perceive an acoustic scene utiliz-
ing the existence of sound events [21]. Thus, audio tagging and
SED tasks are closely related to the ASC task. The audio tagging
task predicts the existence of predefined sound events from an input
recording. An audio tagging system outputs a tag vector with an
equal dimensionality to the number of predefined sound events; the
value of each dimension is between 0 and 1, denoting the predicted
posterior probability of the existence of each event. The SED task
predicts the existence of sound events and determines the onset and
offset of each event. Both tasks are studied with different applica-
tions and are utilized to further improve the ASC system [13, 15].

In this study, we assume that audio tagging may be more ad-
equate to help improve the ASC system because the ASC system
does not require the onset and offset of sound events. Thus, we
choose an audio tagging system to improve the ASC system and ex-
tend Jung et al.’s work [15], which proposed the use of tag vectors
by either directly concatenating it with the representation vector of
the ASC task for classification or producing an attention map for
the channel domain.

3. BASELINES

3.1. Vanilla ASC system

The vanilla ASC system (i.e., baseline) is a variant of the squeeze-
excitation (SE)-ResNet [22], which performs the ASC task in an
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Figure 1: Phase 1: a vanilla ASC system (a) and an audio tagging system (b) are independently pre-trained. Phase 2: the proposed ASC
framework using tag-representation-based dual attention (c) is initialized using (a) and (b), and then trained. The weight parameters of the
tag representation extractor are frozen. The final feature map is derived by applying the dual attention to the feature map. (⊕: element-wise
addition, ⊗: element-wise multiplication)

end-to-end manner. Figure 1-(a) shows the structure of the vanilla
ASC system. First, when a Mel-spectrogram derived from an audio
recording is provided as the input, the feature map is extracted us-
ing a convolution block and few SE-Res blocks. The convolution
block comprises a convolution layer (Conv), batch normalization
layer (BN) [23], and rectified linear unit (ReLU) layer. The SE-
Res block consists of a sequence of layers, Conv-BN-ReLU-Conv-
BN-SE, with a residual connection [24]. A global average pooling
layer aggregates the feature map into a recording-level feature. The
recording-level representation is fed through two fully-connected
layers and then classified into one of the ten predefined scenes. Fur-
ther details regarding the architecture of the vanilla ASC system are
presented in our DCASE2020 challenge technical report [25].

3.2. Multi-label audio tagging system

An audio tagging system predicts the existence of predefined sound
events. Using the knowledge that sound events are proactively iden-
tified when a human performs an ASC task [15, 21], this study uti-
lizes an audio tagging system to improve the performance of the
ASC system. We use the multi-label audio tagging system proposed
by Akiyama et al. [26], the winning system of the DCASE2019
challenge task2. This system detects the existence of 80 sound
events in an input recording. Figure 1-(b) depicts the structure of the
audio tagging system. The system is trained in a semi-supervised
manner using a set of training data consisting of a small amount
of human-labeled data and a large amount of noisy labeled data.
We use the Mel-spectrogram-based system among two systems pro-
posed in the paper for consistency of input feature throughout this
study.

4. PROPOSED FRAMEWORK

4.1. Tag representation

A tag vector, which represents predicted probabilities regarding the
existence of predefined sound events, was used in a previous study
[15]. Eighty predefined sound events are used in an audio tagging
system. However, the actual number of sound events that can occur
in an input recording for an ASC system outnumbers the predefined
sound events. In an extreme scenario, a given audio recording may

not include any predefined sound events. In such a case, the tag
vector may mislead information, which corrupts the system, similar
to an out-of-distribution problem [18].

To alleviate this issue, we use a tag representation instead of
a tag vector, based on the assumption that a tag representation
will involve rather abstract sound event information. It is inspired
by [27], which uses the last hidden layer’s output as the represen-
tation vector for a different task after training the DNN for a sim-
ilar task. Table 1 shows the number of misclassified scene pairs
among the baseline and the ASC systems utilizing the tag vec-
tor and tag representation. When using tag vectors, misclassifi-
cation increases in two pairs (“shopping mall-airport” and “pub-
lic square-street pedestrian”) among the top-7 most misclassified
pairs of scenes. Contrarily, when using tag representation, mis-
classification decreases in all seven pairs. Furthermore, except
“metro-tram”, the tag representation consistently demonstrates a
lower number of misclassified recordings.

4.2. Dual attention

Attention mechanism [17] was initially proposed for the ma-
chine translation task, and various attention mechanisms have been
adopted across different tasks. The authors of [19] and [20] pro-
posed the application of an attention mechanism to the positional
and channel dimensions of the feature map simultaneously. They
reported that long-range contextual information can be explored and
the two-dimensional information can be refined. By leveraging this
knowledge, we take advantage of the dual attention technique to im-
prove ASC performance. We apply a dual attention method to the
frequency-time and channel dimensions of the frame-level features
before it is aggregated into a recording-level feature by an average
pooling layer. Consequently, it is expected that scene information
scattered in the two-dimension of the feature map will be empha-
sized. The attention map is generated directly using a single fully-
connected layer, and not by a dot product between vectors derived
from the convolution operation, as discussed in [19].

4.3. Tag representation guided dual attention network

Combining tag representation and dual attention mechanism, de-
scribed in previous subsections, the overall proposed system is
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Table 1: Comparison results of three systems for the top-7 confus-
ing scene pairs. “Baseline” refers to the vanilla ASC system used in
this paper; “Tag-vec” and “Tag-rep” refer to the systems using the
tag vector and tag representation for ASC, respectively.

Scene pair Baseline Tag-vec Tag-rep

Metro - Tram 114 97 105
Shop mall - Airport 107 116 104
Shop mall - Metro st 84 56 45
Shop mall - Street ped 83 69 69
Public sq - Street ped 74 77 71
Public sq - Park 74 65 58
Airport - Street ped 66 63 46

shown in Figure 1-(c). Before training the proposed system, a
vanilla ASC system and an audio tagging system are pre-trained
to initialize the feature extractor and the tag representation extrac-
tor, respectively. Note that, for the tagging system, the output layer
is removed and the weights are frozen. When an audio recording is
entered as the input, an ASC feature map and tag representation are
extracted in parallel.

The extracted tag representation is used to derive attention maps
that are used to apply a dual attention mechanism. The assump-
tion is that dispersed sound event information related to the char-
acteristics of the scenes can be emphasized. Let M be a feature
map, M ∈ RC×F×T where C, F , and T refer to the number of
feature map channels, frequency bins, and length of the sequence
in the time dimension, respectively. Given a tag representation
Trep ∈ R512, we first feed it into two fully-connected layers to
generate attention maps, Af and Ac.

Af = Trep ·WAf , Af ∈ RN ,

Ac = Trep ·WAc , Ac ∈ RC
(1)

where · refers to the matrix multiplication; and N = F × T .
WAf and WAc are weight matrices of the fully-connected layers,
WAf ∈ R512×N , and WAf ∈ R512×C . Subsequently, Af and
Ac are reshaped to Af ∈ Rh×(N/h) and Ac ∈ Rk×(C/k), respec-
tively, where h and k denote the number of heads in each case. The
frequency-time attention map, A′

f , and channel attention map, A′
c,

are denoted as:

A′
f = [A′

f1, A
′
f2, · · · A′

fh], A
′
fh ∈ RN/h,

A′
fh = [A′

f1h, A
′
f2h, · · · , A′

fih], A
′
fih ∈ R1,

A′
c = [A′

c1, A
′
c2, · · · A′

ck], A
′
ck ∈ RC/k,

A′
ck = [A′

c1k, A
′
c2k, · · · , A′

cik], A
′
cik ∈ R1,

(2)

where A′
fh and A′

ck correspond to the softmax-applied attention
map for a single head and i refers to the index for each dimension.
Softmax is applied to each element of A′

fh and A′
ck, denoted as:

A′
fih =

exp(Afih)∑N/h
j=1 exp(Afjh)

, A′
cik =

exp(Acik )∑C/k
j=1 exp(Acjk )

(3)

where j refers to the index for counting elements in each head.
Subsequently, A′

f and A′
c are reshaped back to A′

f ∈ RF×T and
A′

c ∈ RC , respectively.
The frequency-time attention map and the channel attention

map perform element-wise multiplication with M where unused di-
mensions are broadcasted. Individually calculated vectors are then

Table 2: Comparison of the official baseline systems of the DCASE
challenge and the two baselines used in this study.

System Acc (%)

DCASE2019 task1-a baseline [3] 46.5
DCASE2020 task1-a baseline [4] 54.1

Ours-vanilla ASC 65.3
Ours-tag vector ASC 66.7

Table 3: Ablation and comparison experiments regarding the effects
of frequency-time and channel attention and the methods used to de-
rive attention maps using a single head (“self”: self-attention, “tag”:
attention map derived using tag representation, “-”: not applied).

System Frequency-time Channel Acc (%)

#1 self - 66.5
#2 - self 65.9
#3 tag - 65.8
#4 - tag 67.6

#5 self self 65.7
#6 self tag 67.1
#7 tag self 66.3
#8 tag tag 67.9

added to comprise a final feature map M ′ ∈ RC×W×H , formally
denoted as:

M ′ = M ⊗A′
f ⊕M ⊗A′

c, (4)

where ⊕ and ⊗ denote element-wise addition and multiplication,
respectively. The final feature map performs the ASC task through
an average pooling layer and two fully-connected layers.

5. EXPERIMENTS AND RESULTS

5.1. Dataset

We use the DCASE2020 task1-a dataset for all experiments. The
dataset contains single-channel audio recordings from 12 cities in
10 different acoustic scenes using 4 different devices and 11 aug-
mented devices. Each recording has a duration of 10 s with 44.1kHz
sampling rate and 24-bit resolution. The development set contains
data from 10 cities and 9 devices. We use the official train/test split
of the DCASE 2020 challenge which assigns 13,965 train record-
ings (≈ 39 hours) and 2,970 test recordings. The evaluation dataset,
used to submit our systems for the DCASE2020 Challenge, includes
all 12 cities and 15 devices. Except in Table 6, all performances are
reported using the official fold1 test set.

5.2. Experimental configurations

All ASC systems described in this paper are conducted under the
same configurations. Mel-spectrograms are extracted using 128
Mel-filterbanks. The number of fast Fourier transform bins is 2,048,
and the window length and shift size are 40 ms and 20 ms, respec-
tively. The batch size and the number of epochs are set to 24 and
800, respectively. The optimizer is SGD; the learning rate is set
to 0.001; we use the cosine learning rate scheduler. We only use
categorical cross-entropy as the objective function. Mix-up [28] is
applied by the data argumentation technique, and alpha is set to 0.1.
Audio tagging system is identical to [26]. Detailed hyper-parameter
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Table 5: Comparison of device and class-wise classification accuracies of the baseline and the proposed system on fold1 test set (base-
line/proposed, %). Bold describes higher accuracy in each device or class.

Device A B C S1 S2 S3 S4 S5 S6

Acc 70.9/74.6 65.6/69.6 69.6/70.2 64.4/70.5 61.7/65.6 65.2/70.6 64.8/68.4 66.2/69.1 59.6/65.4
Class Airport Bus Metro Metro st Park Public sq Shop mall Street ped Street traf Tram

Acc 61.4/62.6 78.8/74.7 68.2/73.3 58.0/68.9 74.6/75.2 63.3/71.9 53.3/54.9 49.3/57.6 82.0/85.9 64.3/68.3

Table 4: Comparison experiments on the number of heads when
applying dual attention.

# Frequency-time heads
3 9

2 69.3 67.8

# Channel 4 69.2 68.2

heads 8 68.7 69.0
16 68.7 68.1
32 68.2 68.2

settings and configuration are further addressed in our technical pa-
per [25].

5.3. Result analysis

Table 2 compares different baselines with the baselines of this study.
The top two rows describe the performance of the official DCASE
baselines which were trained using DCASE2020 task 1-a dataset.
The third row refers to our vanilla ASC baseline. The bottom row
shows the performance of our implementation of [15], which uses
a tag vector for the ASC task. Results demonstrate that both our
implemented systems outperform the community’s baseline by over
10%. The tag-vector-based ASC system has a higher classification
accuracy than that of the vanilla ASC system, which is consistent
with the results in [15].

Table 3 addresses the effect of dual attention and the mecha-
nism to derive an attention map with single head. A comparison of
systems shows that using both attentions on the frequency-time and
channel domains is more effective than applying an attention in one
domain. For deriving attention maps, using tag representations per-
sistently demonstrates a higher performance than self-derived meth-
ods, with an exception when applying only frequency-time domain
attention. Herein, system #4 has the identical configuration as the
last row of Table 2, but uses tag representation instead of tag vector.
By comparing the results of the two systems, we confirm that us-
ing tag representation is more effective than using tag vectors for
an ASC task. Applying both attentions using tag representation
demonstrates the highest performance, with a classification accu-
racy of 67.9%.

Table 4 describes the result of a comparison study that shows
the effect of the number of heads when deriving attention maps.
The number of frequency-time attention head designates a range
of frequencies to which attention is applied. In the case of three
heads of frequency-time attention, attention is applied by dividing
the feature map into three parts of the frequency bin. We choose
the best performing system from Table 3 with an accuracy of 67.9%
and change the number of heads. Overall, using fewer heads leads
to a higher accuracy, with a few exceptions. The best result can
be obtained using three heads for frequency-time attention and two
heads for channel attention.

Table 5 addresses the classification accuracies of the vanilla

Table 6: Results of our submitted systems for the DCASE2020 chal-
lenge task1-a.

System # Param Acc (%)

DCASE2020 baseline [4] 5M 51.4

Ours-tag rep 0.6M 71.0
Ours-tag rep+LCNN 1.6M 71.7

ASC system and the best-performing proposed system for each
scene and device. Across all nine devices including six augmented
devices, the proposed system demonstrates higher classification ac-
curacies. In terms of each acoustic scene, the proposed system out-
performed the baseline in all scenes but Bus, in which the accuracy
decreased from 78.8% to 74.7%.

Finally, Table 6 shows our system’s submission results for the
DCASE2020 challenge. The performance of the submitted sys-
tems is the result of the score-sum ensemble in which systems were
trained by constructing 4-fold cross validation. Support vector ma-
chine classifiers using radial basis function and sigmoid kernel are
used for a score-level ensemble. Compared to the DCASE2020
baseline, the proposed system reported a 22.8% relative improve-
ment in accuracy with one-eighth model complexity. The final row
shows the result of the score-sum ensemble with another ASC sys-
tem using an architecture referred to as LCNN [29], and the perfor-
mance increased to 71.7%.

6. CONCLUSION

In this paper, we focused on the role of sound events included in
an audio recording to improve the performance of an ASC system.
A framework that uses a pre-trained audio tagging system was ex-
tended. We analyzed that tag representation yields more accurate
attention maps compared to a conventional method that uses a tag
vector. Leveraging the knowledge that a dual attention method can
emphasize crucial information scattered in feature maps, we pro-
posed a method of tag representation for guided dual attention. The
proposed system demonstrated the superiority of the performance
through several comparative experiments. Compared to baseline
accuracy of 65.3%, the final proposed system shows an improved
accuracy of ASC 69.3%. As our future work, we plan to study the
relationship with other acoustic signal processing tasks such as SED
using a multi-task learning method.
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