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ABSTRACT

Deep Neural Networks are known to be very demanding in
terms of computing and memory requirements. Due to the ever
increasing use of embedded systems and mobile devices with a
limited resource budget, designing low-complexity models without
sacrificing too much of their predictive performance gained great
importance. In this work, we investigate and compare several well-
known methods to reduce the number of parameters in neural net-
works. We further put these into the context of a recent study on
the effect of the Receptive Field (RF) on a model’s performance,
and empirically show that we can achieve high-performing low-
complexity models by applying specific restrictions on the RFs, in
combination with parameter reduction methods. Additionally, we
propose a filter-damping technique for regularizing the RF of mod-
els, without altering their architecture and changing their parameter
counts. We will show that incorporating this technique improves
the performance in various low-complexity settings such as pruning
and decomposed convolution. Using our proposed filter damping,
we achieved the 1st rank at the DCASE-2020 Challenge in the task
of Low-Complexity Acoustic Scene Classification.1

Index Terms— low-complexity, acoustic scene classification,
receptive-field regularization, pruning, network decomposition

1. INTRODUCTION

The recent advances in machine learning have been mainly due to
the unprecedented successes of deep neural networks with millions
or even billions of trainable parameters that can learn from a large
amount of data and solve complex problems. Although in deep
learning, the main attention has been on reaching the highest perfor-
mance, as these models continue to expand their applications from
research into industry, the memory efficiency, energy consumption,
and latency of these models become more and more important.

To address these problems, a new line of research has been es-
tablished to design low-complexity neural networks that are capa-
ble of reaching the performance of the large models, while hav-
ing many orders of magnitude fewer parameters. In this area, three
main approaches have been followed in the literature. A first ap-
proach is knowledge distillation [1], which trains a smaller network
known as the student, by using the output of a bigger network (the
teacher) as the training signal. Second are methods that focus on
proposing efficient neural architectures that by design have fewer
parameters [2, 3]. For example, strategies such as depth-wise sep-
arable convolutions [4] or careful tuning of the width and depth

1Code available at: https://github.com/kkoutini/cpjku_
dcase20

of the networks [3] aim at producing efficient networks with lower
complexity. Another approach to designing low-complexity archi-
tectures is to use decomposition layers; given the fact that neural
network parameters are mostly represented with high-dimensional
weight tensors, several approaches have been developed to decom-
pose these into smaller tensors to reduce the computational load,
without sacrificing the model’s performance. In [5–7], the au-
thors propose different methods to decompose a single convolu-
tional layer into multiple smaller ones, resulting in more compact
models with computational speedup. Similarly, [8–10] investigate
the use of 1 × 1 convolutions to reduce the number of channels
before applying more expensive operations with larger filter sizes.
A third class of approaches aims at starting with a large high-
performance model, to then remove a large part of the parameters by
network pruning [11–14]. Parameter Pruning is the process of com-
pressing a neural network by zeroing out some of its parameters.
Some methods focus on removing the weights of pre-trained mod-
els [12, 15, 16], while more recent approaches incorporate iterative
training, by pruning and resetting only the non-pruned weights [13],
or pruning without the use of any training data [17]. We will fo-
cus our analysis on the width and depth restriction methods (Sec-
tion 3.1), on decomposed CNNs (Section 3.2), and on parameter
pruning (Section 3.3), which have gained more popularity and in-
terest among the scientific community, and leave aside the Knowl-
edge Distillation approaches due to their high complexity and slow
nature.

Recently CNNs have been successfully used for end-to-end
Acoustic Scene Classification (ASC) [18–21], outperforming previ-
ous approaches and setting new state-of-the-art. Recent studies on
ASC with CNNs have revealed that regularizing the RF of CNNs
can significantly improve their generalisation [20–24]. Further, au-
thors in [18] provide a systematic way for controlling the receptive-
field of CNNs by adapting the architectural design of the networks.
Although such regularizations improve generalisation, they affect
the architectural design and the number of parameters used in a
model. Hence, finding methods that can achieve high performance
by following the RF-regularization principles, while having mini-
mal complexity becomes a challenging and important task.

In this paper, we aim at connecting the concept of RF-
regularization, with the low-complexity CNNs, and investigate the
relationship between the RF size, architecture complexity, and gen-
eralisation performance of CNNs for the task of ASC. To this end,
we analyse the performance of different low-complexity ASC meth-
ods, under various RFs, and show how RF affects the performance
in low-complexity settings. We empirically evaluate different ap-
proaches to low-complexity ASC, and analyse their performance
under various maximum receptive fields to reveal the connection be-
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tween generalisation in a low-complexity setup, and the RF of the
models. Further, we propose a novel RF-regularization technique
called “Damping” which regularizes the RF of any CNN, without
a need to alter the topological design of the network. We show
that our Damping RF regularization achieves the best performance
with both pruning and decomposition architectures, and hence is a
suitable approach for improving generalisation of models in low-
complexity settings.

2. ARCHITECTURES

Previous work has shown the success of RF-regularized CNNs in
various acoustic tasks [22, 23]. Therefore, we base our work on
the RF-regularized ResNet architecture introduced in [18]. Further-
more, we introduce a new technique for further restricting the effec-
tive receptive field of the network and provide empirical evidence
on its success in ASC.

2.1. Baseline ResNet Architecture: CP-ResNet

The details of the RF-regularized ResNet architecture are explained
in [20], where the authors introduce the hyperparameter ρ in the
architecture design, such that the RF of the architecture can be
changed by varying ρ. Since previous work [18, 22, 24] showed the
optimal range of the RF for different ASC datasets to be approxi-
mately between 75 and 150 (for the input spectograms explained in
Section 4), we restrict our experiments to ρ values in range 3-12.
Furthermore, we remove the tailing 1 × 1 convolutional layers by
removing the last 5 residual blocks,2 in order to reduce the num-
ber of parameters in the baseline. As shown in architecture RN1
in [18], these tailing layers have a minor effect on the performance
of the model. We refer to this RF-regularized ResNet architecture
as CP-ResNet throughout this paper.

2.2. Frequency Damping: Damped CP-ResNet

Previous work [18] has shown that restricting the RF of deep CNNs,
especially over the frequency dimension, results in better general-
ization on different ASC datasets. While [18] introduces a method
for systematically tuning the RF of CNNs, the proposed approach
requires changes to the architecture, which as a result changes the
number of parameters. To address these drawbacks, we propose
a novel method to restrict the Effective Receptive Field (ERF) of
CNNs – the part of the RF that has the most influence on the output
activation, as detailed in [18, 25] – by damping the convolutional
filter weights over the frequency dimensions. Each convolutional
neuron has a limited receptive field of its layer input. Damping
works in such a way that the further the input is from the center of
a neuron’s RF, the less influence it will have on that neuron.

In practice, we damp the filters of a convolutional layer by ap-
plying an element-wise multiplication between the convolution fil-
ter weights and a non-trainable constant matrix C ∈ RT×F (damp-
ing matrix). The damping matrix matches the spatial shape of the
filters. It decays linearly away from the center, so that the outermost
elements of the filter over the frequency dimension have a smaller
influence on the activation.

The resulting network is called damped CNN, where every
convolution operation On = Wn ∗ Zn−1 + Bn is replaced by
On = (Wn � Cn) ∗ Zn−1 + Bn, ∗ is the convolution operator,
� is the element-wise multiplication operator, Zn−1 is the output

2The residual blocks from 8 to 12 as explained in Table 1 of [20]

of the previous layer, Wn is the filter trainable weight, and Bn is
the bias. The matrix has a value of 1 in the center, and decays
linearly to reach a value λ; we used λ = 0.1 in our experiments.
This approach has shown empirical improvement over CP-ResNet
in different ASC datasets. We refer to this architecture as Damp
throughout this paper.

3. MODEL COMPLEXITY REDUCTION APPROACHES

In this section, we investigate 3 different approaches to reduce the
number of parameters of CNNs. We follow the principle of reducing
the number of parameters, while keeping the final receptive field of
the network constant, which allows the comparison with the base-
line models in each receptive field setting.

3.1. Width and Depth restriction

Reducing the width (number of channels) and depth (number of
layers) of CNNs is a simple technique to reduce the network size.
Tan and Le [3] showed that after an optimal width of the network is
reached, increasing the width further will result in only a minimal
performance gain at best. The width of the network has quadratic
influence on the number of weights, while the depth has a lower
effect as the number of parameters grows linearly with the number
of layers. Based on this fact, and the goal of our experiments that
is comparing different RF setups, we focus our efforts on different
network widths.

As explained in Section 2.1, we remove the tailing residual
blocks with 1×1 convolutions since we are only studying networks
with ρ values in range 3 − 12. Therefore, we decrease the depth
and the number of parameters from the baseline network in [18,20],
with only a minimal performance impact. However, removing these
tailing layers with 1 × 1 convolutions result in a significant reduc-
tion of the number of parameters in the baseline (reported in [24]
with ρ = 7) from 3956K to 1715K.

We change the width of our CNNs (Section 2) by changing the
number of channels in initial layers from 128 (in the baseline archi-
tecture) to 64 and 32. This results in reducing the baseline parame-
ter count from 1715K to 431K and 109K respectively.

3.2. Decomposed Convolutions

Inspired by the use of singular-value-decomposition (SVD) for con-
volutional neural networks [7], we propose to directly train decom-
posed convolutional layers instead of decomposing and then fine-
tuning a pretrained model, as done in [7] . Given a regular convolu-
tional layer with dimensionality

Cin × Cout × k × k, (1)

with Cin and Cout being the number of input and output filters re-
spectively, and k being the kernel size. Such a layer can be decom-
posed into three convolutional layers using a compression factor Z:

Cin × (Cout/Z)× 1× 1

(Cout/Z)× (Cout/Z)× k × k

(Cout/Z)× Cout × 1× 1

(2)

For example, a 128 × 128 × 3 × 3 convolution has 147456
parameters (neglecting the bias). Using a compression factor Z =
4, we get three convolutions 128×32×1×1, 32×32×3×3 and 32×
128× 1× 1, resulting in 17408 parameters. Similar approaches to
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Figure 1: Testing accuracy of CP-ResNet on DCASE’18
with/without filter damping on the frequency dimension using dif-
ferent CNN width setups as explained in Section 3.1.

decompose convolutions for the purpose of parameter reduction are
explored in [8–10]. Our proposed decomposition shares the same
structure as the ”bottleneck” building block described in [10], but
is different from them as we do not use non-linearities and batch-
normalization within the decomposed block, which proved to yield
better performance.

3.3. Parameter Pruning

Pruning is well studied in neural network literature and several
methods and adaptation have been proposed [12–17]. We use mag-
nitude pruning [12, 14] with iteratively increasing the pruning ratio
until reaching the desired number of parameters.

Authors in [17] show that pruning approaches perform very
similarly, if the compression-ratio is up to 1%. Since in our low-
complexity setting, we are not targeting compression-rates lower
than 1%, we choose to use the more simple magnitude-pruning ap-
proach. We ramp up the number of pruned parameters with an ex-
ponential decay from 0 to the final desired number in 100 epochs,
to get models with 250K, 300k, 400k, and 500k parameters. This
allows us to remove more weights at the beginning of the training,
and fewer weights in later stages as the model converges.

4. EXPERIMENTAL SETUP

We evaluate our proposed approaches introduced in Section 3 on
two acoustic scene classification (ASC) datasets.

DCASE’20 Low Complexity ASC [26]: The dataset contains
40 hours of recordings from 12 European cities in 10 different
acoustic scenes that are summarized into three categories, indoor,
outdoor and transportation. We follow the training/test split pro-
vided by the task organizers where recordings from one city are not
seen during training.

DCASE’18 ASC [27]: The dataset comprises recordings from
six European cities with similar acoustic scenes as the DCASE’20
dataset. We choose this dataset because it has 10 classes which
makes it a more challenging task compared to DCASE’20, there-
fore we can better differentiate the performance between different
approaches with the 500KB limit (and more) that was used in the

Figure 2: Comparison of different complexity reduction methods in
different receptive field setups on DCASE’18. All methods apply
frequency-damping. The line color represents the accuracy.

DCASE’20 challenge. This dataset has a relatively smaller size re-
sulting in shorter training time. Therefore, we use DCASE’18 for
our detailed analysis.

For feature extraction, we compute perceptually weighted Mel-
spectrograms from the provided 10 second audio snippets which we
down-sample to 22.05kHz similar to [18]. Each input channel of
the stereo audio is processed independently, normalized using the
training set statistics and provided as a two-channel-spectrogram
input to the CNN. We use the same experiments and training setup
as explained in [20].

5. RESULTS

Table 1 summarizes the results of our best performing models on
the DCASE’20 and DCASE’18 datasets. On both datasets we ob-
serve an improvement for the damped ResNet architecture, com-
pared to the baseline. Furthermore, we observe that a simple width
reduction, i. e., reducing the number of base channels and thus de-
creasing the overall number of parameters, is not as effective as
pruning the weights of a bigger network. Following the pruning
strategy explained in Section 3.3, we can achieve models with a
significantly lower number of non-zero parameters, with the same
performance on DCASE’20 or only minor performance degradation
on DCASE’18.

5.1. Frequency Damping Comparison

To further investigate the effect of damping, we compare the perfor-
mance of several baseline CP-ResNets with and without damping,
using different maximum RF setups on DCASE’18. Fig. 1 shows
that damping not only improves the overall performance, but is also
more robust to the choice of the maximum RF. We also observe
that the damped ResNet with 128 base channels (Damped) yields
the best overall performance using ρ = 7 to regularize the RF.
The model with 64 base channels (Damped 64) decreases the per-
formance, while significantly reducing the number of parameters
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Figure 3: Comparing different complexity reduction methods
in different receptive field setups with and without damping on
DCASE’18. All methods use 128 base channels. Decomp uses a
compression factor Z = 4. ND refers to no damping method being
applied to the original Network. The size of the dots relates to the
number of model parameters.

DCASE’20 DCASE’18

Model Non-Zero Acc. Non-Zero Acc.
CP-ResNet 1061.6K .9726 1715.6K .7852
Damp. 1061.6K .9745 1715.6K .7915
Damp.-Restricted 268.6K .9722 431.8K .7701
Damp.-Pruned 250K .9745 400K .7854
Damp.-Decomp. 361K .9700 417K .7696

Table 1: Comparison of the performance of the best models of the
discussed approaches on the DCASE‘20 and DCASE’18 datasets.
We report the accuracy (Acc.) and the number of non-zero parame-
ters. Damp. refers to a damped ResNet as introduced in Section 2.2,
Damp.-Restriced is a width restricted ResNet with 64 base chan-
nels (cf. Section 3.1), Damp.-Pruned is a pruned ResNet (cf. Sec-
tion 3.3) and Damp.-Decomp. is a ResNet where all convolutions
are replaced with decomposed convolution and a compression fac-
tor Z = 4 (cf. Section 3.2). The table shows the mean of the
accuracy over the last 10 epochs for each model. All DCASE’20
and DCASE’18 models use ρ = 4 and ρ = 7, respectively.

(shown in Figure 2), and 32 base channels seems to result in an
insufficient amount of parameters for this task. As can be seen in
Fig. 3, Damped CP-ResNets outperforms non-damped CP-ResNets
with the same number of parameters, both in pruning and decom-
position cases.

5.2. Parameter Pruning vs. Network Decomposition

Comparing all parameter reduction methods in Figs. 2 and 4, we see
that pruning is the closest model to the frequency-damped baseline
(Damp) in terms of performance, and achieves the highest accuracy

Figure 4: Comparing different complexity reduction approaches on
the DCASE’18 dataset. All networks are damped. The size of the
dots relates to the number of model parameters.

with limited parameters. Fig. 4 further shows that the pruned model
achieves an accuracy close to the baseline, while significantly re-
ducing the number of non-zero parameters. Using decomposed con-
volutions, the performance degradation is significantly higher than
for pruning. Similarly, simply reducing the width of the network
results in a large loss in accuracy.

6. CONCLUSION

In this paper, we analysed various low-complexity CNN-based ap-
proaches for ASC, and studied the relationship between the RF
and the performance in each approach. We showed that pruning
achieves better performance compared to decomposition and width
reduction methods. We proposed a filter damping technique that
can be used in low-complexity settings to regularize the RF of
models, without altering the architectures. We showed that using
filter damping improves the performance on all architectures and
datasets we evaluated, hence is a simple and effective technique for
improving generalisation of models. Our results on two datasets
for ASC suggests that the proposed filter damping can achieve
state-of-the-art performance in low-complexity ASC. Using this ap-
proach, we achieved the 1st rank at the DCASE-2020 Challenge
Low-Complexity Acoustic Scene Classification (Task1.b).
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