
Detection and Classification of Acoustic Scenes and Events 2020  2-3 November 2020, Tokyo, Japan
  

 

EMBEDDED ACOUSTIC SCENE CLASSIFICATION FOR LOW POWER 
MICROCONTROLLER DEVICES 

Filippo Naccari Ivana Guarneri 

STMicroelectronics 
System Research and Applications 

Stradale Primosole 50, 95121 Catania, Italy 
filippo.naccari@st.com 

STMicroelectronics 
System Research and Applications 

Stradale Primosole 50, 95121 Catania, Italy 
ivana.guarneri@st.com  

Salvatore Curti Alberto Amilcare Savi 

STMicroelectronics 
System Research and Applications 

Stradale Primosole 50, 95121 Catania, Italy 
salvatore.curti@st.com 

STMicroelectronics 
System Research and Applications 

Via C. Olivetti 2, 20864 Agrate Brianza, Italy 
alberto.savi@st.com 

ABSTRACT 

Automatic sound understanding tasks have been very popular 
within research community during the last years. The success of 
deep learning data driven applications in many signal understand-
ing fields is now moving from centralized cloud services to the 
edge of the network, close to the nodes where raw data are gener-
ated from different type of sensors. In this paper we show a com-
plete workflow for a context awareness acoustic scene classifica-
tion (ASC) application and its effective embedding process into 
an ultra-low power microcontroller (MCU). It can widen the ca-
pabilities of edge AI applications, from environmental and inertial 
sensors up to acoustic signals, which require more bandwidth and 
generate more data. In the paper the entire workflow of such de-
velopment is described in terms of dataset collection, selection 
and annotations, acoustic features representation, neural net mod-
eling and optimization as well as the efficient embedding step of 
the whole application into the target low power 32-bit microcon-
troller device. Moreover, the overall accuracy of the proposed 
model and the capability to be real time executed together with an 
audio feature extraction process shows that such kind of audio un-
derstanding application can be efficiently deployed on power con-
strained battery-operated devices. 

Index Terms— acoustic scene, deep learning, convo-
lutional neural net, real-time, microcontroller 

1. INTRODUCTION 

Acoustic scene classification is one of the most common tasks in 
the field of sound understanding applications. It is the task of au-
tomatic labeling acoustic environments from the sound they pro-
duce [1]. During the last years several public challenges have been 
proposed in order to allow research community to improve auto-
matic detections results on a common evaluation baseline [2][3][4]. 
Several public datasets have been also published with the goal to 
address sound understanding applications both for the 

environment classification and acoustic event detection. Some 
public datasets are composed of sounds produced in particular 
acoustic environments [5][6][7], whereas some address the com-
plete ontology of sounds in real life conditions in order to enable 
a full sound based context awareness computing [8][9]. Public 
challenges based on such datasets drive the submitters through 
common baseline systems [10] and evaluation metrics [11], which 
usually lead submitters to propose data modeling solutions aimed 
to reach the best accuracy scores regardless the computational 
complexity aspects. More recently, some metrics related to the 
complexity of submitted machine learning models have been pub-
lished [12], paving the way to a tradeoff oriented research in terms 
of accuracy vs complexity data modeling. Moreover, the upcom-
ing diffusion of interconnected nodes, belonging to the Internet of 
Thing (IoT) ecosystem, leads to design low complexity footprint 
applications, since most of the IoT nodes are typically battery op-
erated and require a small power consumption application foot-
print. In this paper we describe a research work related to finding 
the best trade off in terms of accuracy and complexity for such an 
edge AI application, aimed to classify on a real time system the 
acoustic scene as a main audio based subsystem of a multi sensing 
context awareness application. In order to limit the number of clas-
ses to a complete first level taxonomy of possible acoustic envi-
ronments, we chose to label the sounds coming from three main 
scenes: indoor, outdoor and in vehicle. The remainder of this paper 
is organized as follows: section II describe the data collection and 
labeling process, section III the data modeling process in terms of 
audio features representation, neural net modeling and inference 
latency optimization, section IV section describe the whole real 
time application embedding on a development kit equipped with a 
digital microphone and low power 32 bit microcontroller unit. Fi-
nally, conclusions and potential further developments will be pro-
vided. 

2. DATASET 

The development workflow of deep learning edge AI applications 
is mainly composed of different steps: i.e. dataset collection, 
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annotation and partitioning, signals feature extraction when not 
end-to-end approach is followed, machine learning (ML) engine 
modeling and hyper-parameters tuning on high level development 
framework, and finally integration and optimization into a se-
lected target platform. In this section we describe the data set used 
for the before mentioned application. An internal data collection 
campaign has been done by using a firmware  application on a 
commercially available multi sensor board, named sensorTile de-
velopment kit [13], which allows to collect and store locally on a 
µSD mass storage the signals coming from different sensors on 
board: environmental, inertial, acoustic. For the goal of the ASC 
application, only data coming from the digital MEMS microphone 
were used. Acoustic data were collected by minimizing the audio 
front end processing steps: pdm2pcm conversion, which is present 
as a hardware feature of the selected recording device, followed 
by an high pass filter tuned to acoustic bandwidth. All recordings 
were done at a 16 KHz sampling rate. Different acoustic environ-
ments were considered as target for a first option, belonging to 12 
different environments: home, office, café-restaurant, shop-
ping-center, park, city-center, residential-area, car, bus, subway, 
train, tramway. The overall recordings were about 29 hours for 
the 12 different environments but not equalized in terms of sample 
per class, whereas for the 3 classes aggregation (indoor, outdoor, 
in-vehicle) an equalized training set partitioning was possible, 
leading to the same length of recordings for each class in the train-
ing set. Moreover, in order to avoid an excessive correlation be-
tween training, validation and test sets, a manual partitioning has 
been performed, thus avoiding that audio segments coming from 
either the same recording or similar acoustic environments could 
be present in different sets, which could lead to modeling overfit 
effects. Table I summarizes the recordings distribution and the da-
taset partitioning into training, validation and test sets, used to de-
velop a neural net model able to classify the selected acoustic 
scenes. 

Table I Audio Recordings (hh:mm:ss) 

3. DATA MODELING 

3.1. Audio Features 

Differently from the computer vision machine learning tasks, au-
dio signals are rarely fed into ML models as raw data. Therefore, 
an audio signal feature extraction process is typically performed 
on raw PCM audio samples in order to extract significant features 
from signals, before feeding them into a ML model for the training 
and inference processes [14]. Hence, we adopted a 2D time-fre-
quency audio features representation by calculating log-mel ener-
gies from audio PCM sample frames, segmented as follows: every 
1024 ms of new samples is calculated a brand-new feature set 
without time overlap. Each column of the 2D matrix is calculated 
every 32ms of new samples (512 new samples at 16KHz) with 
a frame overlap of 50%. This leads to an audio features set, 

by considering 30 log-mel coefficients for each frame, rep-
resented by a 30x32 matrix, which is the input to the convolutional 
neural net. 

3.2. Neural Net Modeling 

Different topologies, mostly related to public challenge submis-
sions, were analyzed for dataset modeling. According to our goal 
of realizing a whole embedded audio based edge AI application, 
we selected few candidates in terms of neural nets topologies 
[15][16], which showed the better trade off  in terms of complex-
ity scalability, i.e. number of trainable parameters vs accuracy. 
Therefore, a two-dimensional Convolutional Neural Net (CNN) 
was selected in order to model the classification task on the col-
lected dataset. To the goal of classifying three different acoustic 
environments: indoor, outdoor and in-vehicle, the model topology 
which showed best trade off in terms of accuracy vs complexity 
is composed of two convolutional layers followed by two dense 
layers, with 7785 trainable parameters. In Table II we report the 
complete topology summary of the adopted CNN model, trained 
by using Keras framework. In Fig. 1 is reported the confusion ma-
trix obtained by the trained CNN on the test set, where a percent-
age average accuracy in 90.16% was obtained. 

Table II 2D CNN Topology 

Layer (type) Out Shape Param #    

conv2d_1 (Conv2D) ( , 28, 30, 16) 160        
max_pooling2d_1 (Max-

Pool2D) 
( , 14, 15, 16) 0          

batch_norm_1 (BatchNorm) ( , 14, 15, 16) 64         
dropout_1 (Dropout) ( , 14, 15, 16) 0          
conv2d_2 (Conv2D) ( , 12, 13, 16) 2320       
max_pooling2d_2 (Max-

Pool2D) 
( , 6, 6, 16) 0          

batch_norm_2 (BatchNorm) ( , 6, 6, 16) 64         
dropout_2 (Dropout) ( , 6, 6, 16) 0          
flatten_1 (Flatten) ( , 576) 0          
dense_1 (Dense) ( , 9) 5193       
batch_norm_3 (BatchNorm) ( , 9) 36         
activation_1 (Activation) ( , 9) 0          
dropout_3 (Dropout) ( , 9) 0          
dense_2  (Dense) ( , 3) 30 
Total params   7867 
Trainable params   7785 
Non-trainable 
params 

  82 

 

3.3. Latency Optimization 

Acoustic scene classification does not require a low latency re-
sponse, since it is devoted to monitoring the environment acoustic 
conditions which typically change slowly over time. Therefore, 
some tests were performed by modulating the model latency in or-
der to optimize the classification average accuracy at an acceptable 
cost in terms of latency, i.e. the classification system time response 
to a sudden acoustic scene change, and computational power. 
Hence, a low pass filter has been applied to the inference engine 
softmax output vector in order to mitigate the effects of mis-clas-
sifications. A set of different filter lengths was tested, going from 
2 up to 28 consecutive inferences outputs. The average accuracy 

Class Training Set Validation Set Test Set 

Indoor 3:28:01 0:51:17 6:49:37 
Outdoor 3:30:23 0:56:32 4:48:23 
In-vehicle 3:30:34 0:53:50 4:26:00 

Total 10:28:58 2:41:39 16:04:00 
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results obtained by applying such filtering strategy to the inference 
engine are reported in Table III. The results show that the best av-
erage accuracy was obtained by filtering 14 successive inference 
softmax arrays. The added latency can be considered a more than 
acceptable cost for most context awareness audio-based applica-
tions. 

Table III Latency Optimization 

Filter 
Length - 2 4 7 14 28 

Avg. 
Acc.  
(%) 

90.16 91.80 92.80 93.30 94.14 93.92 

4. REAL-TIME EMBEDDED APPLICATION 

The reference CNN ASC model for indoor, outdoor, in-vehicle 
classification has been implemented as real time application on 
the sensorTile development kit [13], reported in  Fig. 2, in order 
to implement a full proof of concept demo application in the field 
of sound understanding IoT applications and to prove also that 
benefits of the data driven deep learning can be extended onto an 
end-point device. The development kit is equipped with sensing, 
processing and connectivity components. To the goal of the ASC 
application the microphone and the microcontroller subsystems 
were used. The ultra-low-power MCU is the STM32L476JG 
(based on ARM® Cortex®-M4 RISC core with FPU operating 
@80 MHz). Its main features are: (100 DMIPS), 128 KB static 
ram (SRAM), and 1 MB of non volatile memory (NVM). It sup-
ports also the onboard digital micro Electro-Mechanical Systems 
(MEMS) microphone through a direct memory access controller 
and provides also the pulse density modulation (PDM) bitstream 
conversion into pulse code modulation (PCM) in hardware. In or-
der to implement the whole application on the target platform 
three main software tasks were therefore implemented: 

- PCM audio buffer samples managing every 32 ms, imple-
mented by handling the audio 16 bit PCM samples coming 
from the digital MEMS Microphone through a DMA con-
troller. 

- Audio Feature Calculation of a single column of the 2D 
feature matrix every 32 ms (every 512 new samples 
@16 KHz) 

- CNN inference engine, which is performed every 1024 ms 
of new samples on a 30x32 LogMel Spectrogram features 
matrix. 

The tasks were configured in terms of priority and duty cycle 
management in order to avoid audio sample loss and allow the 
real time continuous application running 

4.1. Audio Buffer Managing 

The audio subsystem of the target platform was configured to ac-
cess by a DMA controller to the microphone samples buffer. 
Therefore, every 1 ms, 16 new PCM samples are added into a fill-
ing buffer, which every 32ms is swapped into a processing buffer, 
which is used as input to the feature calculation process. Each 
buffer is composed of 1024 16 bit PCM samples 

4.2. Audio Signal Featurization 

512 new PCM samples, collected every 32 ms, are moved to the 
processing buffer and processed on a window of 1024 PCM audio 
samples to generate a single feature column with a frame length 
configuration of 1024 samples with a 50% overlap. The process 
is repeated 32 times in order to generate a brand-new audio feature 
matrix, which has 30x32 size and is then processed by the 2D 
CNN inference engine. The steps to calculate a 30 log-mel coef-
ficients from 1024 16 bit PCM samples are here reported: 

- Asymmetric Hanning windowing 
- 1024 samples fft f32 application 
- Power spectrum calculation 
- Mel filter banks look-up table application 
- Mel energies log amplitude calculation 
- Range clipping [-80.0, 0] dB 

The output of the process is a single column of the 2D feature 
representation, composed by 30 LogMel coefficients. 

4.3. Inference Engine 

As mentioned above, the 2D CNN model was trained by using 
Python based framework Keras. In order to map the inference en-
gine to C code, an AI extension pack for STM32CubeMX tool 
was used [17], able to generate an STM32-optimized library from 

 
Figure 1: Average Accuracy on Test Set 

  
Figure 2: SensorTile Development Kit. size: 13.5 

mm x 13.5 mm 
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neural network models pre-trained on most common high level 
deep learning frameworks. Post training quantization and a vali-
dation on target platform were also performed for the inference 
engine process related to the CNN selected model. Moreover, the 
post training model quantization process, optimized on a repre-
sentative input/output subset allowed to significantly reduce the 
overall library complexity for the target platform at a minimum 
cost in terms of model accuracy. In Table IV the comparison, in 
terms of resources on the target platform of both 32 bit floating 
point and integer 8 bit quantized models, is reported. 

Table IV CNN Complexity Figures 

Model Avg. Acc. 
(%) 

NVM 
(KB) 

RAM 
(KB) 

Inference 
Time (ms) 

ASC CNN f32 90.16 30.81 17.41 81.505 
ASC CNN int8 89.17 7.71 4.94 36.022 

4.4. Application Complexity 

A complexity estimation process of the whole embedded ASC ap-
plication has been also performed. We report in table V the re-
quirements in terms of NVM, RAM and execution time on the 
target platform of the main software tasks described before: audio 
buffer managing, audio feature calculation and the CNN int8 
fixed point post training quantized inference engine coupled with 
the post processing filter. According to the reported software tasks 
frequency distribution and their execution time on the reference 
platform, we then estimated a 13.6% MCU duty cycle, which 
shows that such kind of sound understanding application can ef-
fectively run onto an ultra-low power MCU. 

Table V Application Complexity Figures 

Task Task period 
(ms) 

NVM 
(KB) 

RAM 
(KB) 

Exec. Time 
(ms) 

PCM buffer 
managing 32 - 8.00 0.484 

Feature Extrac-
tion 32 7.87 7.88 2.750 

Inference En-
gine + PP 1024 7.71 5.03 36.072 

 

5. CONCLUSIONS 

In this paper we showed the results of the entire development 
workflow of a sound understanding deep learning application on 
an end-point microcontroller device. We showed that it is possible 
implementing data driven effective applications even if 
power-constrained devices, e.g. wearable and headsets devices. 
The whole application, composed of audio signal conditioning, 
feature extraction and 2D convolutional neural net inference en-
gine, requires a fraction of a typical consumer ultra-low power 32 
bit microcontroller computational power. Therefore, it can run 
continuously thus enabling advanced sounds recognition context 
awareness use cases. The low memory footprint as well as the duty 
cycle requirements allow also to address for future developments 
either multi inference engine applications or multi-modal sensors 
fusion based higher complexity applications. 
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