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ABSTRACT
In this paper, we investigate the feasibility of training low complex-
ity convolutional neural networks directly from waveforms. While
the vast majority of proposed approaches perform fixed feature ex-
traction based on time-frequency representations such as spectro-
grams, we propose to fully exploit the information in waveforms
directly and to minimize the model size. To do so, we train one di-
mensional Convolutional Neural Networks (1D-CNN) on raw, sub-
sampled binaural audio waveforms, thus exploiting phase informa-
tion within and across the two input channels. In addition, our ap-
proach relies heavily on data augmentation in the temporal domain.
Finally, we apply iterative structured parameter pruning to remove
the least important convolutional kernels, and perform weight quan-
tization in floating point half precision. We apply this approach on
the TAU Urban Acoustic Scenes 2020 3class dataset, with two net-
work architectures : a 1D-CNN based on VGG-like blocks, as well
as a ResNet architecture with 1D convolutions, and compare our re-
sults with the baseline model from the DCASE 2020 challenge, task
1 subtask B. We report four models that constitute our submission to
the DCASE 2020 challenge, task 1 subtask B. Our results show that
we can train, prune and quantify a small 1D-CNN model to make
it 20 times smaller than the 500 KB challenge limit with an accu-
racy at baseline level (87.6 %), as well as a larger model achieving
91 % of accuracy while being 8 times smaller than the challenge
limit. ResNets could be successfully trained, pruned and quantified
in order to be below the 500 KB limit, achieving up to 91.2 % accu-
racy. We also report the stability of these results according to data
augmentation and monoraul versus binaural inputs.

Index Terms— raw audio, Convolutional neural networks, au-
ditory scene classification, residual networks, data augmentation,
pruning

1. INTRODUCTION

Modern approaches for Deep Learning in computer vision or natu-
ral language understanding have been very successful in automat-
ically learning flexible feature extractors, using convolutional neu-
ral networks [1], residual networks [2], or attention-based / trans-
former models [3]. Such feature extractors are trained using large
amounts of data, limiting the need for hand-crafted features or rep-
resentations. In contrast, most deep learning approaches for audio
applications still rely on expertly defined, fixed feature extractors
based on time-frequency representations, such as spectrograms or
mel-spectrograms [4].

In this work, we were interested in testing the hypothesis that
using a fixed feature extractor is detrimental for computational com-
plexity, for two reasons. First, considering a spectrogram (or equiv-
alent) as an image-like input may tend to overparametrize the down-

stream network, as the effort in training for classification becomes
a two-dimensional problem. Second, a spectrogram only consid-
ers the power in frequency bands, ignoring the phase. In particular,
when considering two channels as input, the phase difference be-
tween the channels could be informative. As a consequence, our
goal is to show the feasibility to train low complexity networks, i.e.
with significantly less parameters than using time-frequency feature
extraction followed by a 2D CNN, using end-to-end learning, from
feature extraction to classification, by training 1D-CNNs on raw
waveforms.

Learning from raw waveforms is costly, due to the size of in-
put vectors. In 2015, Sainath et al. [5] demonstrated that a raw
waveform feature extracted with a convolutional layer matches the
performance of the log-mel features when trained with more than
2 000 hours of speech. While approaches such as recurrent net-
works [6, 7, 8] or dilated convolutions [9] have previously been
considered, such approaches need a very large number of param-
eters to be successful. SoundNet [10] is one notable example of
successful training of a fully convolutional network on raw wave-
forms, and was trained on unlabeled videos using a teacher-student
approach by distilling knowledge from vision networks. SoundNet
demonstrated that it is feasible to train an efficient approach us-
ing raw waveforms, although two millions videos (corresponding
to over one year of sound) were used for training, and the obtained
model contains about 2.8 million parameters, for a size of approxi-
mately 11MB. Other approaches have successfully been trained on
raw waveforms using knowledge distillation [11] from larger net-
works that were trained using log-mel feature [12, 13].

We suggest that it is possible to train a network for auditory
scene classification using less than 50 hours of audio and less than
500 KB parameters. We tackle this problem by proposing an ap-
proach that relies on several techniques relevant in audio signal pro-
cessing, as well as recent advances in deep learning training and
compression techniques. We demonstrate the feasibility of this ap-
proach on the TAU Urban Acoustic Scences 2020 dataset, which
consists in binaural recordings of urban soundscapes. First, we
performed resampling after a careful examination of the dataset.
Next, we use both input channels to train 1D-CNNs, ie with one-
dimensional convolution kernels, coupled with stride and/or max-
pooling to reduce the size of internal feature maps. Third, we use
various strategies for data augmentation, in order to challenge the
network the learn relevant audio features with degraded or masked
versions of the waveforms. Our data augmentation strategies are
inspired both by recent progress in deep learning in computer vi-
sion, as well as classical audio signal processing operations such as
filtering. Finally, we apply parameter pruning, fine tuning and quan-
tization to the best models obtained, in order to reduce the number
of parameters and the memory footprint of the approach.
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The rest of this paper is organized as follows. We begin by de-
tailing our strategies for data augmentation during training in sec-
tion 2. Next, we describe the two proposed network architectures in
section 3. In section 4, we detail how we achieve to compress our
models using structured parameter pruning and quantization. We
explain our experimental and training setup in section 5, including
an ablation study showing the separate effect of the various tech-
niques we introduced. Finally we present and discuss our results in
section 6.

2. DATA AUGMENTATION

The proposed approach relies heavily on data augmentation (DA),
with the underlying hypothesis that combining various forms of DA
can yield better flexibility with a smaller set of parameters, as well
as better generalization. We use five forms of DA: temporal mask-
ing, filtering, noise addition, Mixup and CutMix [14]. The various
hyperparameters of DA were chosen in preliminary analysis on sub-
sets of the dataset. All DA are applied to 99% of the training set
randomly at each epoch.

2.1. Temporal masking

Random crop using a rectangular window is an extremely common
DA strategy for training 2D CNN in computer vision applications.
We adapted this strategy to the temporal domain, by considering a
temporal mask that is positioned randomly in the signal. We imple-
ment temporal masking by multiplying the signal by a rectangular
window. The position of this window is randomly chosen within
the total length of the signal, with a total of 1000 possible positions.
The window length is randomly chosen according to a Gaussian
distribution, with an average of four seconds and a standard devia-
tion of one second. Importantly, the resulting signal after temporal
masking is still 10 seconds long, which enables us to train and vali-
date the network with the full signal length.

2.2. Filtering

We perform DA using filtering in order to augment the variety of
the frequency content in the training set, thus challenging the net-
work training to extract the most relevant frequency features when
degrading the frequency content of the dataset. As a consequence,
we apply eight finite impulse response filter (FIR): three low pass
filters, three high pass and two band pass filters. These filters are
applied after the temporal masking (if present) on the 10 second
long signal. The cut-off frequencies of the low pass and high pass
filter are respectively 300, 1000 and 2000 Hz. Two band pass filters
are used : one with a bandwidth of 1200 to 3400 Hz, and one with
a bandwidth of 340 to 3400 Hz.

2.3. Additive noise

The third DA strategy is to add white Gaussian noise into the signal.
The signal to noise ratio is randomly chosen between 6 and 32 dB,
by steps of 1 dB. Noise is added in the signal after temporal masking
and filtering.

2.4. CutMix

CutMix [14] has been previously introduced as a very efficient DA
strategy for training CNNs for computer vision task. The general
idea of CutMix is to produce a new sample by concatenating two

segments belonging to two different categories, and set the target
by weighting according to lengths of each segment.

2.5. Mixup

Mixup [15] is another DA strategy that is similar to cutmix. Instead
of adding two portions of signal from two different categories with
a mask, mixup computes an weighted average of the signals across
categories, with the same weights given to the targets.

3. NETWORK ARCHITECTURE

In this section, we present four models that were submitted to the
DCASE 2020 Task 1 subtask B challenge. These architectures are
inspired by popular CNN, namely VGG [1], and ResNet [2]. We
adapt these architectures for raw binaural waveforms.

3.1. 1D-CNN

The first architecture is a one dimensional small standard CNN
(models A and B in table 1 and figure 1) composed of successive
blocks, each including a sequence of a convolution, Batch norm,
Rectified Linear Unit Activation (ReLu), and Max Pooling. These
blocks are similar to the ones found in networks such as VGG [1].
The particularities of this architecture are (1) the two input channels
to deal with binaural sound, (2) one-dimensional operators such as
1D convolutions, 1D max pooling and 1D average pool. Note that
the first convolutional layer doesn’t share parameters between the
two input channels, but two sets of filters are learnt separetly for
each channel. We propose two networks, detailed in figure 1.

3.2. ResNet

The second architecture we use is ResNet (models C and D in ta-
ble 1). ResNet [2] is a very efficient architecture that enables to
train very deep neural networks, which have established the state of
art result in many computer vision tasks. The proposed 1d-ResNet
is based on a basic block described in figure 2, including a short-
cut that uses a 1x1 convolution, and convolutions with 3x1 kernels.
The architecture that we present here is composed of a first convo-
lutional layer (2 input channels Conv1d, 32 output channels, kernel
of size 64, stride of 4) followed by three modules. Each module
is made of respectively 3, 4 and 3 basic blocks for model C, and
3,3,3 basic blocks for model D. Convolutions within each module
are composed of respectively 32, 64 and 128 feature maps. Note
that no max pooling is used in ResNet, and strides of 4 are used in
the first convolution of each group of basic block. Average pooling
is performed before the final fully connected layer.

3.3. Baseline architecture

As this work was performed for the DCASE 2020 challenge, we
compare our results with the baseline architecture proposed by the
challenge [17]. The baseline system performs audio feature extrac-
tion by computing log mel-band energies with 40 bands and 40 ms
frame (50% overlap). These features are fed to a 2D CNN with two
convolutional layers, the first layer including 32 filters with 7x7 ker-
nels, maxpool 5x5, ReLu, followed by a second layer including 64
filters with 7x7 kernels, maxpool 4x100, and 1 fully connected layer
with 100 hidden neurons. For this model, inputs are sampled at 48
kHz, 24 bits. In order to have a fair comparison with our approach,
we also consider a binaural version of the baseline model, with two
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Figure 1: Two simple 1-dimensional CNN on raw waveform. Panel
a corresponds to Model A and Panel b corresponds to Model B.
For Conv1d modules, the numbers correspond respectively to input
feature maps, output feature maps, and kernel size. For the Lin-
ear module, numbers correspond to number of inputs, number of
outputs.
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Figure 2: ResNet Block (figure adapted from [16]).

input channels in the first convolutional layer. We train the baseline
using the same DA strategies applied on the waveforms before fea-
ture extraction, and we also tested 2D DA strategies applied on the
mel-features (Random Crop, and 2D versions of Mixup and Cut-
mix).

4. MODEL COMPRESSION

4.1. Structured Pruning

Pruning of network parameters (ie setting parameters to zero) is a
common technique used to decrease the number of non-zero param-
eters. We perform structured pruning, i.e. the parameters of whole
convolution kernels or input features of linear modules are set to
zero. The importance of convolution kernels is estimated using the
L1 norm of its parameters, and the least important kernels are set
to zero. Previous studies have shown that structured pruning can
lead to high compression rates while keeping good performance on
standard computer vision tasks [18, 19]. After the initial training of
the model (see section 5.2), we perform pruning using an iterative
approach based on fine-tuning (similar to [18]), as follows :

1. Ranking of convolution kernels’ importance using the L1
norm.

2. Pruning of the least important ones by setting the corre-
sponding parameters to zero (we used both 10 % and 20 %
in our experiments).

3. Fine tuning of the pruned model on the training set dataset,
with DA identical to initial training. We fix a relatively low
learning rate (1e-5) and train the model using early stopping
on validation set (see section 5.2).

4. Repeat from 1 until a stopping criterion is reached.

We use different stopping criterion for pruning : prune while the
total number of nonzero parameters is above the challenge allowed
maximum (model D), minimize parameter count while keeping an
accuracy above the DCASE baseline of 87.3% (model A and C), or
minimize parameter count while keeping an accuracy close to the
full model (model B).

4.2. Quantization

After having performed training, pruning and fine-tuning iterations,
our final step is the quantization of all model parameters. We quan-
tize all inputs and parameters to floating point half precision, which
uses 16 bits for each data. This level of precision enables to keep
very similar test accuracy when compared with the full precision
model, even slightly increasing the accuracy in some cases.

5. EXPERIMENTS

5.1. Datasets

The dataset for this task is based on TAU Urban Acoustic Scenes
2020 3Class [20, 17]. All samples were recorded from the same
device in different sites (shopping mall, metro, bus, ...). There are
three possible acoustic scene categories : transportation, indoor and
outdoor. Each audio sample is 10 second long, binaural, sampled at
48 kHz in 24 bits precision. An extensive inspection of frequency
content and frequency coherence of the development set has indi-
cated that most of the signal energy is below 9000 Hz. There-
fore, we resample all audio to 18 kHz in 16 bits precision, using
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name
Model Accuracy Loss params

Total
params

Non-zeros
(KB)
Size

Baseline 87.2 0.363 115441 115441 220.0
Model A 87.6 0.360 13632 12160 23.8
Model B 90.9 0.288 30080 29888 58.4
Model C 87.6 0.379 398400 130730 255.3
Model D 91.2 0.269 373696 238896 466.6

Table 1: Performance and model complexity of the models submit-
ted to the challenge.

the Fourier method. We generate a validation set using 20% of the
available training data, and use the remaining 80% as training set.

5.2. Training protocol

All models are trained using an Adam optimizer with a starting
learning rate of 0.001 and a batch size of 64. We use a scheduler to
divide the learning rate by 2 when the loss on the validation set does
not improve during five epochs. The model with the best accuracy
on the validation set is kept and tested on the test set. Model C and
D are trained using only CutMix, while Model A and B are trained
using Temporal masking, filtering and additive noise. For all mod-
els, the training protocol is perfomed in the following sequence:

• Training until early stopping as indicated by validation set per-
formance,

• Iterative structured pruning on parameters and fine tuning, as
described in section 4,

• Quantization to floating point half precision, and final evalua-
tion on the test set.

5.3. Ablation study

We perform an ablation study in order to demonstrate the influence
of our design choices. We perform a fine grain comparison between
our most efficient model with the baseline model, by isolating the
different DA strategies, as well as the effect of mono versus binaural
input. For the mono case, we use an average of the two channels, as
preliminary tests have shown that using either an average or a single
channel out of the two yielded similar results.

6. RESULTS AND DISCUSSION

Table 1 presents the results obtained by the four models (as well as
the official baseline) on the test split, as well as the parameter count
(batch norm layers are not included). As our approach does not use
fixed feature extraction (e.g. spectrogram), we included the whole
model in the calculation of model parameters 1. Our results show
the feasibility of using raw binaural waveforms to train a model 20
times smaller than the 500 KB limit (model A), as well as a model
achieving 90.9 % of accuracy, while being 8 times smaller than the
challenge limit (model B). We also provide results for larger ResNet
models approaching the 500 KB (model C and D).

Interestingly, when considering DCASE challenges, over 491
submissions on Acoustic scene classification from 2013 to 2020,
there are 26 submissions that use raw waveforms as input features

1Pytorch training and evaluation code is available here https://
github.com/brain-bzh/dcase-2020-task1-subtaskB)

DA (Retrained)
Baseline

(binaural)
Baseline

(mono)
Model B

(binaural)
Model B

None ±0.6%
87.9

±0.5%
89.5

±0.5%
84.3

±0.3%
89.2

Noise
TM, FILT,

±0.6%
87.8

±0.4%
89.7

±0.4
85.7

±0.4
90.9

CutMix ±0.9%
87.0

±0.5%
90.2

±0.2%
86.3

±0.2%
91.1

Mixup ±0.7%
87.2

±0.6%
90.0

±0.3%
85.1

±0.4%
89.6

crop
2D random

±0.6%
88.2

±0.7%
89.6 - -

2D cutmix ±0.7%
88.0

±0.7%
90.3 - -

2D mixup ±0.6%
86.7

±0.3%
90.2 - -

Table 2: Ablation study comparing DA strategies, mono versus bin-
aural, between the baseline and model B (5 repetitions, average +
95% confidence interval). Our best result for Model B binaural +
cutmix was obtained after the challenge deadline, thus the differ-
ence with table 1.

together with other types of features, and only 15 contributions us-
ing waveforms only. Considering datasets with binaural data since
2018, 11 submissions use binaural with raw-waveforms and spec-
trograms as input features. To the best of our knowledge, the present
contribution is the first using binaural raw waveforms as sole input
features, by submitting four such models to the DCASE 2020 Task
1 subtask B. In addition, Model B is ranked first when considering
only models trained on waveforms, and has rank 48 overall.

We perform the ablation study on Model B, which shows the
best compromise between accuracy and model complexity (table 2).
Binaural inputs leads to significant accuracy gains, both with raw
waveform (+ 5.9%) or mel-features in the baseline model (+1.6%).
However, the larger gain obtained for Model B may be explained
by the lack of instantaneous phase information in log-mel features.
DA strategies do not provide clear gains in accuracy for the base-
line model (table 2). For 2D input, we test 2D DA such as cutmix,
mixup and random crop [14]. When using raw waveform as inputs,
the most efficient DA are CutMix (+2%) and temporal masking, fil-
tering and noise together (+1.6%). Table 2 also shows that binaural
inputs increase accuracy by 4.9% with raw-waveforms and 1.6%
with log-mel. This suggests that binaural inputs are more beneficial
on raw-waveforms, an hypothesis that could be challenged in future
work by performing a comparison with Fourier features in 2D.

The proposed ResNet models coud not be trained very effi-
ciently; model C achieves a performance slightly better than base-
line (0.4 % increase) with about 12 % more parameters, and model
D achieves an increase of 4 % with twice as much parameters than
the baseline. Note that both ResNets could be extensively pruned,
by zeroing about two thirds (resp. one third) of model C’s param-
eters (resp. model D). This result that training large ResNets on
raw audio on this task leads to over parametrization, which may be
due to the small size of the dataset. Future studies could consider
larger scale datasets to test whether performance of networks such
as ResNet can be efficiently trained.
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