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ABSTRACT

In this paper, we propose an improved version of the anomalous
sound detection (ASD) system for noisy and reverberant conditions,
which was submitted to DCASE 2020 Challenge Task2. The im-
proved system consists of three phases: feature extraction, autoen-
coder (AE) model, and focusing techniques. In the feature extrac-
tion phase, we used spectrograms instead of log-mel energies for
more effective distinction of normal and abnormal machine sounds,
and validated this feature for the baseline autoencoder model and in-
terpolation DNN (IDNN). We also applied the focusing techniques
in both train and evaluation phases, which focuses on machine-
adaptive ranges of reconstructed errors for performance improve-
ments. Through experiments, we found that our proposed ASD sys-
tem outperforms baseline methods under the unsupervised learning
scenario. The performance improvement was especially remarkable
for non-stationary sounds; above 95% of AUC score was achieved
for slider and valve sounds with the proposed system.

Index Terms— DCASE Challenge 2020 Task2, Anomalous
sound detection, Unsupervised learning, Deep neural networks, Au-
toencoder, Focused back-propagation, Focused hypothesis test

1. INTRODUCTION

Recently, researches on unsupervised learning-based anomalous
sound detection (ASD) is getting attention. For the training and
fair evaluation of sound detection algorithms, a large-scale database
is essential. However, due to the rarity and diversity of real-world
anomalous sounds, it is difficult to create or collect massive pat-
terns of such sounds. In consequence, we have to detect unknown
anomalous machine sounds which have patterns not reflected in
given training data.

Most ASD systems adopt outlier detection techniques because
it is difficult to collect sufficient amount of anomalous machine
sound data. In [1], deep neural network-based autoencoders (AE)
were used to build up an ASD system. In their system, acoustic fea-
tures were extracted from the encoder part, and the input vector was
reconstructed at the decoder part of the AE. Using the reconstruc-
tion error defined as the mean squared error (MSE) between the
input and reconstructed vectors, statistical hypothesis test was con-
ducted with a predefined threshold value [2]. In [3]-[4], AE-based
an acoustic feature extractor was optimized to maximize the true
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positive rate under an arbitrary false positive rate, by adopting the
Neyman-Pearson lemma. Furthermore, in [4], the authors proposed
an algorithm that samples outliers in a latent vector space to artifi-
cially generate anomalous machine sounds, in order to increase the
difference of hypothesis test results between normal and anomalous
sounds. Suefusa found that reconstruction errors are considerably
decreased by interpolating only the center frame, rather than recon-
structing the all input frames [5]. By minimizing the interpolation
error, which is the difference between the output of an interpolation
DNN(IDNN) and the input center frame, the performance of their
ASD system was remarkably improved in the case of non-stationary
machine sounds.

Task2 of Detection and Classification of Acoustic Scenes and
Events (DCASE) 2020 challenge [2] featured unsupervised detec-
tion of anomalous sounds from various machine conditions. The
task provided a freely accessible machine sound database[6]-[7],
which consists of both normal and anomalous operating sounds of
six types of toy and real machines. Since only normal machine
sounds are included in the training set, unsupervised learning-based
approach was required for the task.

In this paper, we propose a novel ASD system using machine-
adaptive focusing techniques. The principal contributions of this
work are threefold. First, we used spectrograms as features instead
of log-mel energies for more effective distinction between normal
and anomalous machine sounds. Second, focused back-propagation
and machine-adaptive focused hypothesis tests were applied in the
training and evaluation phases, respectively. Only selective frames
were used when calculating reconstruction errors to improve system
performance in the unsupervised learning scenario. Third, we val-
idated the suggested spectrogram features and focusing techniques
on the baseline AE and IDNN models, and achieved remarkable
improvement of the area under the receiver operating characteristic
(ROC) curve (AUC) scores with the provided dataset.

2. REVIEW OF THE BASELINE SYSTEM

The AE-based baseline system [2] of DCASE Challenge task2 con-
sists of 9 fully-connected layers where batch normalization and rec-
tified linear unit (ReLU) activation functions are applied for all lay-
ers except for the output layer. Each machine sound sequence is
converted to the time-frequency domain using short-time Fourier
transform (STFT) with frame size of 1024 and half overlap. After
that, every 5 consecutive STFT coefficients are fed into a mel-filter
bank to obtain 128 dimension log-mel spectra feature vector. The
input feature vector x can be reconstructed as follows:

% = D{E{x|0s}|0p} (D
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Figure 1: The block diagram of the proposed ASD system

Here, E and D denote the encoder and decoder parts of AE respec-
tively, and 6 and 6p correspond to model parameters. Anomaly
score A is defined as the MSE between input x and reconstructed
vector X as given by

A(x,%) = E{||x — %|[3} )

where E{-} and || - || denote mathematical expectation and Lo
norm, respectively. Finally, the machine sound is classified as ab-
normal when the anomaly score A exceeds threshold value.

3. THE PROPOSED ASD SYSTEM

In this section, we describe the proposed ASD system using sev-
eral techniques including spectral feature extraction, focused back-
propagation, and focused hypothesis test in order to improve ASD
performance in the unsupervised learning scenario. The simplified
block diagram of our proposed ASD system is depicted in Fig. 1.
Each method is described in the following subsections.

3.1. Spectral feature extraction

In the provided baseline system, the AE model minimizes recon-
struction error between input and reconstructed log-mel spectro-
gram feature vector during the training process. However, in [2],
some types of machine sounds have innate characteristics that limit
further improvement of ASD performance. To overcome such limi-
tations, in [8], several time-frequency-domain spectral features [9]-
[10] were extracted from the training set and their effects on the per-
formance of the baseline ASD system were verified. In our system,
we used the spectrogram feature as it showed the most significant
performance improvement among various features. In Fig. 2, com-
parison of feature vectors extracted from a normal valve sound is
shown. As shown (a) and (b) in Fig. 2, there are significant pattern
losses when using the log-mel spectrogram feature vector. Since
such dimension reduction may lead to performance degradation in
ASD, submitted systems were trained on linear-scale-based spectral
feature vectors to overcome loss of recognizable patterns.

3.2. Focused back-propagation

To improve the ASD performance, it is ideal to maximize the RE
difference between normal and anomalous sounds. In the super-
vised learning scenario, different strategies can be considered for
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Figure 2: Comparison of spectral feature vectors extracted from
normal value sound (a) log-mel spectrogram (b) spectrogram

the machine sound and the noise periods. However, the provided
training set does not provide any label that can distinguish between
machine and noise periods. In this work, focused back-propagation
(FB) is proposed to further reduce RE in the normal machine sound
periods in unsupervised learning scenarios. It is assumed that the
energy of the input feature is greater in the machine sound periods
than in the noise periods, and this assumption is identically applied
to the reconstruction error. We select only the top p reconstruction
error values in each batch so that only focused errors are used for
back-propagation. In an unsupervised learning scenario, the RE of
model with FB and baseline model are compared between normal
and abnormal machine sound to see if using FB actually can enlarge
the RE of the actual machine sound period. The comparison results
are represented in Fig. 3. As shown in Fig. 3 (c) and (f), the RE of
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Figure 3: Comparison of RE results for normal and anomalous valve machine sound input signal (a) spectrogram of normal sound (b)
reconstruction error of normal sound (c) comparison of RE results of normal sound (d) spectrogram of anomalous sound (e) reconstruction
error of anomalous sound (f) comparison of RE results of anomalous sound

the FB-based AE makes the RE deviation larger in actual machine
sound periods.

3.3. Focused hypothesis test

After the cost function of AE model converges, baseline ASD sys-
tem makes decision according to hypothesis test results  as fol-
lows:

1(Anomalous),

A(x,R) > ¢

otherwise

3

O(normal),

H(A(x, %)) = {

where ¢ is a pre-defined threshold value. Since averaged RE in
frames are considered when deciding the status of machine sound
in (3), focusing on the RE of only the machine sound periods af-
fects the entire ASD performance. However, in the unsupervised
learning scenario, it is difficult to precisely select the actual ma-
chine sound period. As an indirect alternative to overcome this
problem, machine-adaptive focused hypothesis test was conducted
in the evaluation phase of our submitted system. We found that RE
of machine sound periods is lower than noise period for machine
types valve and slider in case of which the frame energies of normal
machine sounds are significantly larger than noise sounds. On the
other hand, other types of machine sound show an opposite pattern.
From these observations, we rectify the RE of frames by sorting
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them in ascending order first, then rejecting outliers as given by

pass,

reject,
where Asori (X, X) is a sorted version of A(x, X) in ascending or-
der. Additionally, ¢; and ¢, are the threshold values for focusing

RE, which are chosen empirically and differently for each machine.
The concept of the focused hypothesis test is depicted in Fig. 1.

¢l < As(n‘t(x7 5() < ¢u

otherwise

A(X, )A(y ¢la ¢u) (4)

4. EXPERIMENTS AND SUBMISSIONS

We evaluated our system performances using the officially provided
training set [6]-[7]. The training set consists of only normal ma-
chine sounds. Each machine sound was recorded with a single mi-
crophone and was sampled at 16 kHz. The recorded machine sound
contains the normal machine sound as well as the factory noise sig-
nal, and label of the machine sound periods was not provided. To
train our ASD systems, The spectrogram feature was extracted with
a frame size of 1024 and half overlap by using numerical python
library, librosa [11]. For optimal learning, ADAM optimizer with
learning rate of 0.001 was set to training models of our ASD sys-
tem. AUC and pAUC scores of baseline AE [2] and IDNN [5] mod-
els were compared to determine the effect of the proposed FB and
FHT on performance. The encoder network comprises FC(D;,, 64,
ReLU and BN), FC(64, 64, ReLU and BN), FC(64, 64, ReLU and
BN), and FC(64, 8, ReLU and BN); the decoder network comprises
FC(8, 64, ReLU and BN), FC(64, 64, ReLU and BN), FC(64, 64,
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Table 1: Comparison of performances of FB and FHT applied to each model

AUC (%) pAUC (%)

Methods L2 [ 3 | 4] s | e L2 [ 3 | 4| s | 6
Baseline [2] 77.16 | 69.08 | 65.60 | 71.61 | 85.33 | 65.00 | 66.87 | 57.86 | 52.79 | 60.95 | 68.03 | 50.25
+FB 82.11 | 71.96 | 66.69 | 71.04 | 86.36 | 69.31 | 72.90 | 60.95 | 52.99 | 62.18 | 68.46 | 51.04
+ FHT 77.57 | 73.13 | 68.13 | 72.98 | 90.21 | 80.43 | 67.49 | 60.50 | 54.30 | 60.76 | 73.90 | 54.00
+ FB and FHT 82.56 | 74.27 | 68.81 | 71.94 | 90.29 | 85.29 | 73.25 | 74.27 | 68.81 | 71.94 | 90.29 | 85.29
Baseline (spectrogram) | 76.01 | 70.77 | 63.49 | 74.58 | 92.60 | 82.88 | 54.77 | 59.95 | 51.57 | 6293 | 77.22 | 55.67
+FB 80.53 | 69.06 | 62.40 | 74.32 | 92.08 | 76.82 | 66.39 | 58.84 | 50.99 | 61.03 | 75.99 | 53.44
+ FHT 79.30 | 72.11 | 64.65 | 75.69 | 94.35 | 90.83 | 63.16 | 61.73 | 52.36 | 63.65 | 84.87 | 74.09
+ FB and FHT 81.84 | 70.78 | 63.40 | 75.13 | 94.13 | 88.18 | 68.28 | 60.51 | 51.39 | 62.54 | 83.92 | 68.35
IDNN [5] 78.98 | 7443 | 70.13 | 73.14 | 86.99 | 87.72 | 72.03 | 60.69 | 53.58 | 61.87 | 67.91 | 66.55
+FB 80.04 | 72.96 | 68.85 | 72.35 | 85.89 | 87.60 | 71.58 | 60.81 | 53.68 | 62.23 | 68.43 | 67.81
+ FHT 79.41 | 76.24 | 72.09 | 75.82 | 92.30 | 99.12 | 71.57 | 63.66 | 54.57 | 61.93 | 76.23 | 96.27
+ FB and FHT 80.43 | 74.58 | 70.04 | 72.92 | 92.19 | 99.06 | 70.99 | 63.32 | 55.21 | 60.72 | 77.30 | 96.34
IDNN (spectrogram) 77.05 | 71.75 | 63.73 | 70.25 | 93.09 | 94.73 | 66.08 | 59.60 | 51.56 | 60.39 | 78.22 | 82.84
+FB 79.93 | 70.17 | 62.01 | 70.20 | 92.86 | 92.95 | 69.37 | 59.28 | 51.25 | 60.09 | 77.37 | 78.32
+ FHT 77.89 | 72.00 | 64.51 | 74.29 | 96.11 | 99.41 | 66.95 | 60.92 | 51.92 | 64.37 | 88.10 | 97.71
+ FB and FHT 80.36 | 70.83 | 62.43 | 73.66 | 96.05 | 99.29 | 69.50 | 60.69 | 51.48 | 62.57 | 87.14 | 97.25

ReLU and BN), and FC(64, Do+, none), where FC(a, b, f) rep-
resents a fully-connected layer with input dimension a, an output
demension b, and activation function f, respectively. For logmel
and spectrogram features, (64 x 5, 64 x 5) and (513 x 5, 513 X 5)
were used as the input and output dimensions (D;rn, Dowt) of the
AE. In case of the IDNN model, (64 x 4, 64 x 1) and (513 x 4,
513 x 1) were accordingly used as input and output dimensions.
Comparison of performances of FB and FHT applied to each model
are summarized in Table 1 where machine classes are replaced as
numbers as follows: ToyCar(1), ToyConveyor(2), fan(3), pump(4),
slider(5), valve(6). Back-propagation was performed with only the
top 10% errors in FB. Performance for each machine was repeat-
edly measured up to 10 times. In the baseline model with log-
mel feature, both FB and FHT improved, and the use of both FB
and FHT showed the best performance. In particular, the perfor-
mance improvement was largest for the valve machine sound. For
the IDNN and baseline models with spectrogram, there were perfor-
mance improvements in only the pAUC score for FB. In contrast,
performance improvement was observed for all models when FHT
was applied. As for the ToyCar machine sound, AUC and pAUC
scores of all models significantly increased when using both FB
and FHT. Compared to other machines, ToyCar is difficult to iden-
tify the machine sound and noise periods using the feature, but the
performance was greatly improved by FB and FHT methods.

5. SUBMITTED ASD SYSTEMS

We applied FB and FHT to the AE model using 128-dimensional
log-mel and 513-dimensional spectrogram, and reported it to task2
challenge [8]. Table 2 shows the performance of the submitted sys-
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Table 2: Performance results of reported ASD system in DCASE
2020 Task2

Machine Development set Evaluation set
AUC (%) | pAUC (%) | AUC (%) | pAUC (%)

ToyCar 82.73 70.35 81.40 66.37
ToyConveyor 76.61 64.01 86.41 71.92
Fan 76.21 62.06 84.38 64.23
Pump 70.77 54.50 82.30 59.97
Slider 94.16 83.97 96.39 83.58
Valve 89.67 72.85 83.86 61.99
Average 81.69 67.96 85.79 68.01

tem for development set and evaluation set, respectively. As shown
in the table, the proposed FB and FHT methods influenced the per-
formance improvement.

6. CONCLUSIONS

In this paper, we proposed focusing techniques including focused
back-propagation and focused hypothesis test. In addition, we com-
pared the performances of the baseline AE and IDNN models us-
ing spectral features, and two focusing methods of FB and FHT.
Through experiments, we verified that these methods are effective in
improving the detection performance of anomalous machine sounds
in an unsupervised learning scenario.
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