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ABSTRACT

Unsupervised anomalous sound detection is concerned with identi-
fying sounds that deviate from what is defined as “normal”, without
explicitly specifying the types of anomalies. A significant obstacle
is the diversity and rareness of outliers, which typically prevent us
from collecting a representative set of anomalous sounds. As a con-
sequence, most anomaly detection methods use unsupervised rather
than supervised machine learning methods. Nevertheless, we will
show that anomalous sound detection can be effectively framed as a
supervised classification problem if the set of anomalous samples is
carefully substituted with what we call proxy outliers. Candidates
for proxy outliers are available in abundance as they potentially in-
clude all recordings that are neither normal nor abnormal sounds.
We experiment with the machine condition monitoring data set of
the 2020’s DCASE Challenge and find proxy outliers with matching
recording conditions and high similarity to the target sounds partic-
ularly informative. If no data with similar sounds and matching
recording conditions is available, data sets with a larger diversity in
these two dimensions are preferable. Our models based on super-
vised training with proxy outliers achieved rank three in Task 2 of
the DCASE2020 Challenge.

Index Terms— Unsupervised Anomaly Detection, Proxy Out-
liers, Outlier Exposure, Anomalous Sound Detection, Machine
Condition Monitoring, DCASE2020

1. INTRODUCTION

Automatic detection of anomalies in audio signals is an active field
of research in machine learning. This class of problems has various
applications in diverse domains, such as novelty-detection in mu-
sic [1], audio surveillance of public spaces [2], or acoustic Machine
Condition Monitoring (MCM) for predictive maintenance [3].

In this work, we elaborate on our findings for Task 2 of 2020’s
IEEE DCASE Challenge [4, 5], which is concerned with unsuper-
vised MCM. MCM systems aim to detect sounds that deviate from
what is considered “normal” for a specific machine or a class of
machines. Since anomalies (i.e., outliers) typically are rare and di-
verse, defining and collecting all possible variants in a sufficient
quantity to train a classifier is hardly feasible. Moreover, collecting
anomalous sounds in MCM often means damaging or destroying
the machine, resulting in undesired costs. One workaround is to
learn models without explicitly specifying and collecting anoma-
lies, which is commonly referred to as unsupervised Anomaly De-
tection (AD). However, in this more general scenario, no guidance

Figure 1: Venn diagram of the data categories. Normal and anoma-
lous sounds are emitted by the target machine in normal and anoma-
lous state, respectively. Proxy outliers are carefully selected from
unrelated data in the audio domain.

through anomalous data is available, which makes generalization to
future outliers hard.

Most studies in the field disregard data that is unrelated to the
task. However we will show in this work that unrelated data, if cho-
sen carefully, can be used as a substitute for unavailable anomalous
data (Fig. 1). This consequently allows us to frame the unsuper-
vised AD problem as a regular classification problem. We call sam-
ples from the unrelated data that will be used for AD Proxy Outliers
(PO). Our approach is supported by the recommendation for out-
lier analysis by Aggarwal [6] who suggests to “always use super-
vision where possible”. In the experimental section, we will inves-
tigate under which conditions unrelated sounds are informative for
anomaly detection and finally compare our results to unsupervised
baselines based on reconstruction error and density estimation.

By merely training a ResNets to distinguish between normal
machine sounds and carefully selected proxy outliers, we achieved
the 3rd team-rank in Task 2 of the 2020’s DCASE Challenge (Un-
supervised Detection of Anomalous Sounds for Machine Condition
Monitoring). This is especially remarkable as we did not apply data
augmentation, transfer learning, model ensembling, or sophisticated
postprocessing. Our implementation is available on GitHub 1.

2. RELATED WORK

According to Chandola et al. [7], anomaly detection (AD) is the
task of identifying patterns in the data that differ from what is re-
garded as normal and, in contrast to noise, are of interest for var-
ious downstream tasks. Following Aggarwal’s taxonomy [6], we
distinguish between the supervised and unsupervised AD settings
based on whether the characters of anomalies are well defined or

1https://github.com/OptimusPrimus/dcase2020 workshop
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unclear. In supervised AD, both normal and anomalous data are
defined, available, and labeled for training; the learning task is to
fit a classifier that generalizes to future data. Unfortunately, due to
the variety of anomalies, it is often hard, in practice, to define and
collect anomalies. Even if representative sampling is possible, the
class imbalance due to the rare nature of anomalies makes learning
particularly challenging. On the other hand, unsupervised AD does
not make any prior assumptions about the nature of anomalies and
is therefore applicable in broader scenarios such as machine condi-
tion monitoring . The learning objective turns into creating a model
of the “normal”, which is then used to assign anomaly scores to new
samples at inference time (e.g., based on log-likelihoods).

Pimentel et al. [8] categorize AD methods into proba-
bilistic, reconstruction-based, distance-based, domain-based, and
information-theoretic approaches. The baseline methods we will
apply in our work fall into the first two categories and are both
based on neural networks. Reconstruction-based methods are typi-
cally based on Autoencoders or Variational Autoencoder [9] trained
to minimize the reconstruction error on the normal training set
(e.g., [3, 10]). At test time, samples are encoded and decoded us-
ing parameters tailored for normal samples, which usually yields
a higher reconstruction error for novel patterns in anomalous data.
Note that this method also yields small reconstruction errors for out-
lier sounds if the Autoencoder generalizes to the anomalous data.
Early probabilistic models for AD were based on parametric and
non-parametric density estimation methods like Gaussian mixture
models and kernel density estimation [8]. Recent work in this cat-
egory uses Normalizing Flows [11] to learn a tractable likelihood
approximation of the training data. However, Kirichenko et al. [12]
show that the latent representations of normalizing flows are mostly
based on local pixel correlations, leading to undesired large likeli-
hood values for semantically unrelated samples.

Recent work in unsupervised AD leverages large amounts of
unrelated image data, which is commonly referred to as outlier ex-
posure [13, 14]. Most related to our work are the findings of Ruff et
al. [14], who report that a classifier trained on normal data and only
64 random unrelated images can outperform the current state of the
art in deep AD. In their experiments, they attribute the unrelated
dataset’s informativeness to the diversity of the content and the rich
multi-scale structure of images.

3. METHOD

To overcome the scarcity problem of anomalous sounds, we propose
to substitute real outliers with Proxy Outliers (PO), i.e., carefully
selected recordings that are neither normal nor abnormal sounds.
(Fig. 1). Note that, compared to anomalous sounds, POs are cheap
and easy to collect if not already available in abundance. In the
experimental section, we test a variety of candidate PO sets and in-
vestigate under which conditions such arbitrary recordings can be
used as POs. To show that our approach can be applied in an un-
supervised AD setting (i.e., without explicitly defining anomalies),
we make no assumptions on the nature of anomalies and presume
only normal data and various candidates for POs are given.

To determine what kind of POs can be utilized for acoustic
MCM, we take advantage of machine sounds contained in the
combined version of the MIMII [15] and ToyAdmos [16] data
sets released for Task 2 of the DCASE2020 Challenge [4]. This
set includes sounds of 41 machine instances, categorized into six
different machine types: fan, pump, slider, toy car, toy conveyor,
and valve. We train deep anomaly detectors per machine instance,

using the normal sounds of each instance as target data set and
several combinations of the remaining machines instances’ training
sets as POs. Note that the test sets of MIMII and ToyAdmos contain
real anomalous machine sounds, and are therefore exclusively used
to evaluate our approach. To further increase the variety of PO
candidates, we also experiment with the TAU Urban Acoustic
Scenes 2020 Mobile (TAU-UAS) data set [17] and the balanced
version of AudioSet [18], which contains sounds of humans,
animals, and even music.

3.1. Normal Sound Data Sets

The ToyAdmos and the MIMII data set contain recordings of sev-
eral machines in a normal and an anomalous operation state, which
are grouped into two and four different machine types, respectively.
For each machine type, recordings of seven machine instances are
available, except for toy conveyor where only six instances are
given. Following the DCASE Challenge, we split the data of each
machine instance into a training and a testing set, such that the first
one contains only normal sounds, and the second one contains both
normal and anomalous sounds. To train an anomaly detector for
a specific target machine instance, we use the training set of this
particular machine instance as normal data. Note that for three in-
stances of each machine type, the test data labels are not given,
since these are used to rank the DCASE Challenge submissions.
Therefore, we use the training data of these instances only as part
of the proxy outlier data. For further details on the exact record-
ing procedure and the distribution of train and test data per machine
instance, we would like to refer the reader to the original data set
papers [16, 15] and the DCASE Challenge description [4].

3.2. Proxy Outlier Set Candidates

Having defined the normal data set for each machine instance, we
will now describe how the corresponding six candidate PO sets are
created from the remaining machines’ normal sets, TAU-UAS, and
AudioSet.

First, we create three combinations of the remaining machines’
normal data so that recording conditions are preserved. Note that
ToyAdmos and MIMII were recorded using separate hardware and
following a different procedure, and therefore must not be used
simultaneously for training if identical recording conditions are
desired. For a particular target machine instance in ToyAdmos
(MIMII), we consequently combine only the remaining machines’
normal data in ToyAdmos (MIMII). The three PO variants (Fig. 2)
are obtained by combining

(a) the remaining training sets of the same machine type,

(b) the remaining training sets of different machine types, or

(c) all remaining training sets.

Furthermore, we experiment with three PO candidate sets with
mismatching recordings conditions, specifically with

(d) the training sets of ToyAdmos if the target instance is in
MIMII and vice versa,

(e) the TAU-UAS data set, and

(f) the balanced version of AudioSet.

Note that AudioSet and TAU-UAS are both rich in recording con-
ditions and content, while ToyAdmos and MIMII only contain ma-
chine sounds and follow a rigorous recording procedure.
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(a) Same Type (b) Different Types (c) All Types

Figure 2: Variants of proxy outlier sets with equal recording condi-
tions. The target set contains the normal sounds (light grey). Proxy
outliers sets are selected from the remaining machines’ training sets
(dark grey).

4. EXPERIMENTAL SETUP

The following section gives a more detailed account of the model
architecture, the training procedure, the baseline systems which are
based on reconstruction error and density estimation, and the eval-
uation method.

4.1. Network Architecture

We choose the model architecture introduced by Koutini et al. [19],
a receptive-field-regularized, fully convolutional, residual network
(ResNet) [20], which has been successfully adopted for various
audio-related classification tasks [21, 22]. The model consists of
three stages with four residual blocks each. The first stage is pre-
ceded by a convolutional layer with 64 filters of kernel size 5 × 5.
We apply global average pooling after the last layer, which allows
us to use inputs of varying sizes. In the first stage, a max-pooling
layer with kernel size 2×2 follows after the first, second, and fourth
residual block. Each residual block consists of two convolutional
layers, where we use 64, 128, and 256 filters in the first, second,
and third stage, respectively. In the first stage, we use filters of size
3×3, except for the second convolution of the first and fourth block
where we use 1× 1 filters. In the other two stages, we use filters of
size 1× 1. A batch normalization layer [23] follows each convolu-
tional layer and we use ReLU activations.

4.2. Preprocessing, Training & Inference

Following the DCASE 2020 Challenge task 2 baseline system [3],
we re-sample the audio signals to 16000Hz and compute a mono-
channel Short Time Fourier Transform using 1024-sample windows
and a hop-size of 512 samples. The re-sampled audio waveform is
normalized to unit variance. We weight the resulting power spec-
trogram with a mel-scaled filterbank of 128 filters and apply the
logarithm to dampen large outliers. Training of the model is per-
formed on random snippets of 256 frames length to minimize the
binary cross-entropy loss for 100 epochs using the Adam update
rule [24] with beta1 = 0.9 and beta2 = 0.99 and a batch size
of 64. Batches are stratified to contain 32 positive and 32 negative
samples. During one epoch the network sees all normal samples;
proxy outliers are drawn randomly. We set the initial learning rate
to 10−4 and decay it each epoch by a factor of 0.99. The anomaly
score for each test example is obtained by collecting all 256-frame
windows of the input, computing the logit score for each of them,
and then mean aggregating all the logit scores to a single value.

4.3. Baselines

The section below describes the baseline methods based on recon-
struction error and density estimation.

4.3.1. Reconstruction Error Based

Following the DCASE2020 Challenge baseline [3], we train a sym-
metric autoencoder with eight fully connected layers to minimize
the reconstruction error on spectrogram snippets of 5 frames length
on the normal data set. All layers have 128 units, except for the
bottleneck layer in the middle, which only has eight units. The test
samples’ reconstruction error, averaged over the whole sample, is
used as anomaly score. Compared to the official baseline system,
we found this method to perform slightly better if trained per ma-
chine instance, and, for this reason, use it as a new baseline. We ap-
ply the preprocessing steps and training procedure described above,
but change the batch size to 512 and the learning rate weigh decay to
one to match the training procedure of the DCASE2020 Challenge
baseline system.

4.3.2. Density-Estimation Based

In addition to the autoencoder baseline we train a Masked Autore-
gressive Flow (MAF) [25] model as described in [26]. This ap-
proach is inspired by [11] who used different types of normaliz-
ing flows (including MAFs) for novelty detection in industrial time
series data. Due to their fast data likelihood estimation MAFs are
well suited for anomaly detection. The model learns the distribution
of the training data which allows using the negative log-likelihood
of an unseen sample as its anomaly score. The anomaly score for
each sample at test time is computed as the average over all non-
overlapping 4 frame snippets. The reported model has 2048 hidden
units per layer, 1 hidden layer per invertible block, and consists of 4
such blocks. The model is trained in an unsupervised fashion (only
access to normal samples) but conditioned on the machine ID (re-
sulting in a 41-dimensional one-hot encoded vector y). To be able
to condition on the machine ID one model was trained on all ma-
chines available for training at once. We apply preprocessing steps
as described above and train the model as described in [26].

4.4. Evaluation

As standard in AD, we use the Area Under the Receiver Operating
Characteristics Curve (AUC), which simultaneously takes true pos-
itive rate and false positive rate into account without fixing a thresh-
old to distinguish between normal and anomalous samples. Let N+

and N− be the set of anomalous and normal samples, respectively,
and A an anomaly detector. The AUC score is then defined as fol-
lows:

AUC =
1

|N+| · |N−|
∑

x−∈N−

∑
x+∈N+

1A(x+)−A(x−)>0

The AUC can be interpreted as the probability that the anomaly de-
tector A ranks two randomly selected positive and negative samples
correctly.

5. RESULTS & DISCUSSION

We train three anomaly detectors for each baseline method and each
variant of the PO data set. To give an overview of the results, we
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Figure 3: AUC averaged over machine instances per machine type. Blue bars represent the baseline systems. Orange bars are proxy outlier
(PO) sets with similar recording conditions, green bars PO sets with mismatching recording conditions. Black error bars represent ±1 standard
deviation of three runs.

Figure 4: AUC averaged per machine type with increasing num-
ber of proxy outlier samples. Proxy outliers are randomly selected
from all remaining machine instances with matching recording con-
ditions (c). Error bars represent ±1 standard deviation of three runs.

average the AUC scores per machine type and show the results in
Figure 3.

We observe a significant improvement over the baselines (blue
bars) if the PO set is composed of samples with matching recording
conditions (orange bars), and the set includes machines of the same
type as the target machine (dark and light orange). Sounds of the
same machine type may be more useful as PO because they are
closer to the actual decision boundary.

What stands out in our results is that only using the training set
of different machine types leads to a substantial drop in AUC for
some machine types, especially for slider, toy car, and valve. This
could be explained by the fact that the sounds of different machines
are too dissimilar to the target sounds and do not contain diverse
content. As a consequence, the classifier might be able to distin-
guish between normal sounds and POs based on simple statistics
and does not learn discriminative features for AD.

For the PO sets with mismatching recording conditions (green
bars), we observe a positive correlation between the improvement
over the baseline and the diversity of recording conditions and con-
tent. If AudioSet is used as PO set, we notice a significant increase
in AUC over the baselines for fan, pump, slider, and toy conveyor
and a considerable decrease for toy car and valve (light green). A

similar but weaker pattern arises if the PO set is composed of sam-
ples from the TAU-UAS dataset (medium green): We observe an
improvement for fan, pump, and toy conveyor and no increase or
even a deterioration for slider, toy car, and valve. Using MIMII for
machine instances in ToyAdmos and vice versa yields a consider-
able drop in AUC for all machine types except for toy conveyor.

Next, we investigate the role of the PO set size by randomly
sampling subsets from all training sets of the remaining machine
instances with matching recording conditions. We start with four
samples and gradually increase the PO set size to the maximum of
16392 samples (Fig. 4). On average, our method outperforms the
autoencoder and NF baseline (except for toy conveyor) with only
128 and 512 POs, respectively.

Note that our observations are consistent with the findings by
Ruff et al. [14], who found that the performance of their outlier
detector increased with the diversity of the POs, and only a few
POs are necessary to outperform unsupervised baselines. Besides,
we identify similarity to the target sounds and matching recording
conditions as critical success factors.

6. CONCLUSION

In this study, we show that carefully selected proxies for anoma-
lous sounds can be leveraged to frame the task of anomalous sound
detection as a simple classification problem. In our machine condi-
tion monitoring experiments, we find that matching recording con-
ditions, similarity to the target sounds, and content diversity make
POs exceptionally informative. We also show that relatively few PO
samples are needed to outperform unsupervised baselines based on
reconstruction error and density estimation.

7. ACKNOWLEDGMENTS

We thank Khaled Koutini for making his implementation of the
receptive-field-regularized ResNet available.

Parts of this research have been funded within the project Au-
toDetect (FFG project no. 862019) and by the BMK, BMDW, and
the Province of Upper Austria in the frame of the COMET Pro-
gramme managed by FFG.

173



Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

8. REFERENCES

[1] Y. Lu, C. Wu, A. Lerch, and C. Lu, “Automatic outlier
detection in music genre datasets,” in Proceedings of the
17th International Society for Music Information Retrieval
Conference, ISMIR 2016, New York City, United States,
August 7-11, 2016, 2016, pp. 101–107.

[2] H. Lim and J. Park, “Rare sound event detection using
1d convolutional recurrent neural networks,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), September 2017, pp.
80–84.

[3] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and
N. Harada, “Unsupervised detection of anomalous sound
based on deep learning and the neyman-pearson lemma,”
IEEE ACM Trans. Audio Speech Lang. Process., vol. 27,
no. 1, pp. 212–224, 2019.

[4] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura,
Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo,
M. Yasuda, and N. Harada, “Description and discussion
on DCASE2020 challenge task2: Unsupervised anomalous
sound detection for machine condition monitoring,” in arXiv
e-prints: 2006.05822, June 2020, pp. 1–4.

[5] P. Primus, “Reframing unsupervised machine condition mon-
itoring as a supervised classification task with outlier-exposed
classifiers,” DCASE2020 Challenge, Tech. Rep., July 2020.

[6] C. C. Aggarwal, Outlier Analysis. Springer, 2013, ch.
Supervised Outlier Detection.

[7] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58,
2009.

[8] M. A. F. Pimentel, D. A. Clifton, L. A. Clifton, and
L. Tarassenko, “A review of novelty detection,” Signal
Process., vol. 99, pp. 215–249, 2014.

[9] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” in 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014.

[10] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and B. W.
Schuller, “A novel approach for automatic acoustic novelty
detection using a denoising autoencoder with bidirectional
LSTM neural networks,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP 2015, South Brisbane, Queensland, Australia, April
19-24, 2015. IEEE, 2015, pp. 1996–2000.

[11] M. Schmidt and M. Simic, “Normalizing flows for novelty
detection in industrial time series data,” CoRR, vol.
abs/1906.06904, 2019.

[12] P. Kirichenko, P. Izmailov, and A. G. Wilson, “Why
normalizing flows fail to detect out-of-distribution data,”
CoRR, vol. abs/2006.08545, 2020.

[13] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep
anomaly detection with outlier exposure,” in 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019.

[14] L. Ruff, R. A. Vandermeulen, B. J. Franks, K. Müller,
and M. Kloft, “Rethinking assumptions in deep anomaly
detection,” CoRR, vol. abs/2006.00339, 2020.

[15] H. Purohit, R. Tanabe, T. Ichige, T. Endo, Y. Nikaido,
K. Suefusa, and Y. Kawaguchi, “MIMII Dataset: Sound
dataset for malfunctioning industrial machine investigation
and inspection,” in Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE2019), November 2019, pp. 209–213.

[16] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto,
“ToyADMOS: A dataset of miniature-machine operating
sounds for anomalous sound detection,” in Proceedings
of IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), November 2019, pp.
308–312.

[17] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-
device dataset for urban acoustic scene classification,” in
Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2018 Workshop (DCASE2018), November
2018, pp. 9–13.

[18] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter,
“Audio set: An ontology and human-labeled dataset for audio
events,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2017, New Orleans,
LA, USA, March 5-9, 2017, 2017, pp. 776–780.

[19] K. Koutini, H. Eghbal-zadeh, and G. Widmer, “Receptive-
field-regularized CNN variants for acoustic scene classifica-
tion,” CoRR, vol. abs/1909.02859, 2019.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[21] K. Koutini, H. Eghbal-zadeh, M. Dorfer, and G. Widmer,
“The receptive field as a regularizer in deep convolutional
neural networks for acoustic scene classification,” in 27th
European Signal Processing Conference, EUSIPCO 2019, A
Coruña, Spain, September 2-6, 2019, 2019, pp. 1–5.

[22] K. Koutini, S. Chowdhury, V. Haunschmid, H. Eghbal-zadeh,
and G. Widmer, “Emotion and theme recognition in music
with frequency-aware rf-regularized CNNs,” CoRR, vol.
abs/1911.05833, 2019.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, 2015, pp. 448–456.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[25] G. Papamakarios, I. Murray, and T. Pavlakou, “Masked
autoregressive flow for density estimation,” in Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 2338–2347.

[26] V. Haunschmid and P. Praher, “Anomalous sound detection
with masked autoregressive flows and machine type depen-
dent postprocessing,” DCASE2020 Challenge, Tech. Rep.,
July 2020.

174


