
Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

SEARCHING FOR EFFICIENT NETWORK ARCHITECTURES FOR ACOUSTIC SCENE
CLASSIFICATION

Yuzhong Wu, Tan Lee

The Chinese University of Hong Kong
Department of Electronic Engineering, Shatin, N.T., Hong Kong S.A.R., China

yzwu@link.cuhk.edu.hk, tanlee@cuhk.edu.hk

ABSTRACT

Acoustic scene classification (ASC) is the task of classifying
recorded audio signal into one of the predefined acoustic environ-
ment classes. While previous studies reported ASC systems with
high accuracy, the computation cost and system complexity may
not be optimal for practical mobile applications. Inspired by the
success of neural architecture search (NAS) and the efficacy of Mo-
bileNets in vision applications, we propose a simple yet effective
random search policy to obtain high accuracy ASC models under
strict model size constraint. The search policy allows automatic
discovery of the best trade-off between model depth and width, and
statistical analysis of model design can be carried out using the eval-
uation results of randomly sampled architectures. To enable fast
search, the search space is limited to several predefined efficient
convolutional modules based on depth-wise convolution and swish
activation function. Experimental results show that the CNN model
found by this search policy gives higher accuracy compared to an
AlexNet-like CNN benchmark.

Index Terms— Acoustic scene classification, convolutional
neural network, neural architecture search, depthwise convolution,
swish

1. INTRODUCTION

Acoustic scene classification (ASC) is the task of classifying
recorded audio signal into one of predefined acoustic environment
classes. It has been one of the major tasks in IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) since 2013. While the main research focus has been
on constructing high-accuracy ASC systems with deeper and larger
networks, there is inevitable concern on the computation cost and
system complexity for practical mobile applications.

To reduce the model complexity and computation cost, many
network architectures have been proposed in computer vision ap-
plications. MobileNet [1] is one of the pioneering light-weight net-
work architectures with low latency. Depthwise separable convolu-
tions (DSC) were proposed to build light-weight deep neural net-
works. MobileNet V2 [2] further improves the model efficiency
by utilizing the inverted residual structure (with linear bottleneck).
ShuffleNet [3] is another architecture which reduces computation
cost via point-wise group convolution and channel shuffle. Shuf-
fleNet V2 [4] introduces a simple operator called channel split to
further improve the efficiency. Although these light-weight models
achieve high performance in vision applications, the architectures
may not be optimal when dealing with audio input. Fine-tuning of
these architectures is needed to better suit the task of ASC.

Neural Architecture Search (NAS) is a technique for automat-
ing the design of deep neural networks (DNN). NAS has been
widely investigated and applied to computer vision. Because the
search space of DNN architectures could be tremendously large,
making exhaustive search impossible, many search strategies were
investigated to better explore the search space. For example,
MetaQNN [5] is an NAS algorithm based on Q-learning to auto-
matically generate high-performing CNN architectures. In [6], a
recurrent neural network (RNN) is used to generate the network ar-
chitecture descriptions. The RNN is trained by reinforcement learn-
ing to maximize the expected performance of the generated archi-
tectures on validation dataset. To further accelerate NAS, efficient
NAS [7] with parameter sharing was proposed to discover network
architectures by searching for an optimal subgraph within a prede-
fined large computational graph. Single-path NAS [8] reduces the
search space from multi-path to single-path. On the other hand, it
was reported that a random architecture selection policy might pos-
sibly have similar performance with the NAS algorithms. [9] The
success of NAS suggests that automatically searched model archi-
tectures could do better than manually tuned ones.

In this paper, we focus on finding efficient classifiers for ASC of
3 high-level classes (indoor, outdoor and transportation). Inspired
by the efficacy of MobileNets and the success of NAS, we propose
a simple yet effective random search policy to find high-performing
ASC models under a strict model size constraint (< 500 KB). The
search policy allows automatic discovery of the best trade-off be-
tween model depth and width, and statistical analysis of model de-
sign can be carried out using the evaluation results of randomly sam-
pled architectures. In our system, scalogram features are extracted
from binaural acoustic scene signals. The average-difference rep-
resentation of scalogram features is used as the input feature of the
ASC system. The search space of model architectures is empir-
ically constrained to 2 - 4 convolutional blocks, with each block
having 1-2 convolutional modules and one pooling layer. The con-
volutional modules include depth-wise separable convolution and
inverted residual, with the ReLU activation function replaced by
Swish. Experimental results on development dataset shows that
CNN model obtained by this search strategy has higher performance
compared to the AlexNet-like CNN benchmark. Analysis on sam-
pled architectures shows that CNNs with constant number of filters
in each convolutional layer perform better than CNNs with increas-
ing number of filters in this ASC task.

2. EFFICIENT CONVOLUTIONAL MODULES

To develop an ASC system with low model complexity, we use
depth-wise and point-wise convolution to construct the classifier
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model. The depth-wise separable convolution (DSC) is the core
module of MobileNet V1 [1], which is an efficient CNN designed
for mobile vision applications. DSC reduces the number of pa-
rameters by factorizing the standard convolution operation into a
depth-wise convolution and a point-wise convolution. The depth-
wise convolution applies a single filter to each input channel. The
point-wise convolution is a 1×1 convolution to combine the output
of depth-wise convolution.

Inverted residual with linear bottleneck is another efficient
module that is the basic building block of MobileNet V2 [2]. It takes
a low-dimensional input, expands the feature to high-dimension,
and then apply filtering by depth-wise convolution. Subsequently
it projects the feature back to low-dimensional representation us-
ing point-wise convolution. After the final point-wise convolution,
no non-linear activation function is applied, and this explains the
name of linear bottleneck. The module contains a residual connec-
tion between input and output. This improves gradient flow through
the network and enables effective training of deeper networks. The
residual connection is described as “inverted” because it exist be-
tween narrow parts of the network, which is opposite to the original
formulation of residual connection [10]. The inverted design is con-
siderably more memory efficient.

We consider both DSC and inverted residual (with linear bottle-
neck) in ASC system design. Instead of using the original formula-
tion, we replace the ReLU activation function with Swish. Similar
to ReLU, Swish function is bounded below and unbounded above.
Besides, Swish function has a smoother output curve and preserves
more information from negative-valued input compared to ReLU.
These properties may provide benefit in terms of convergence. It
was reported that Swish performs better than ReLU for various ap-
plications [11]. Denoting the input as x, the Swish function is de-
fined as:

Swish(x) = x · sigmoid(βx), (1)

where β can be a constant or trainable parameter. For simplicity we
set β = 1.

Figure 1 shows the two types of convolution modules used in
our experiments. For a convolution layer, the input variable “inp”
refers to the number of input channels and “out” refers to the num-
ber of output channels of this module. The inverted residual module
has an expansion ratio of 3, which is smaller than the typical ratio 6
used in the original MobileNet V2. The stride of convolution layers
is 1 and the kernel size of depth-wise convolution is typically 3×3.

Depth-wise Conv (inp, inp)

BatchNorm

Swish

Point-wise Conv (inp, out)

BatchNorm

Swish

Point-wise Conv (inp, 3*inp)

BatchNorm

Swish

Depth-wise Conv (3*inp, 3*inp)

BatchNorm

Swish

Point-wise Conv (3*inp, out)

BatchNorm

Figure 1: The two types of convolutional modules used for net-
work architecture sampling. Left: Depth-wise separable convolu-
tion module; right: inverted residual with linear bottleneck with
expansion ratio 3. The swish activation function is used instead of
ReLU.

3. SEARCHING FOR NETWORK ARCHITECTURES

3.1. Network Architectures

The search space of network architecture is constrained to CNNs
with classic single-path design, which is a stacking of convolution
modules and pooling operations with a fully connected output layer
in the end. Specifically, the first layer of the network is fixed as a
standard 3× 3 convolution layer called stem convolution layer. Af-
ter the stem convolution layer there are 2 - 4 convolutional blocks.
We define a convolutional block as a stacking of convolutional mod-
ule(s) and a pooling layer. A block may contain one or two convo-
lutional modules(s) and one pooling layer. Then a global average
pooling layer follows. The output layer is a fully connected layer
with the output dimension of 3, representing the output probabili-
ties of the 3 acoustic scene classes. Notice that probabilities for an
audio file are the average of its segments’ probabilities. Figure 2
shows an example of the model in the search space.

Pooling Layer

Module A

Module B

Convolutional 
Block 1
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input
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2x2 Average  Pooling
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Figure 2: Illustration of a model in the search space. It has 4 con-
volutional blocks. The 3rd block contains a 5× 5 DSC module and
an average pooling layer.

3.2. Search Space

We search for CNN models which meet the model architecture defi-
nition in Section 3.1. To reduce the search space, we limit the types
of modules in convolutional blocks to 5. The modules are shown
as in Table 1. Identity mapping means the input is identical to the
output, which is a dummy module used to increase the diversity of
sampled network’s depth. Modules with id 1 and 2 are DSC mod-
ules described in Section 2, with kernel size being 3× 3 and 5× 5.
Likewise, modules with id 3 and 4 are inverted residual (with linear
bottleneck) modules described in Section 2. The different choices
of kernel size allow sampling of CNN architectures with different
receptive field, which is a factor affecting the classification accuracy
[12]. For the pooling layer, either 2 × 2 average pooling or 2 × 2
max pooling can be selected.

The details of our search space are shown in Table 2. The “Stem
conv. output filters” specify the number of output filters in the stem
convolution layer. “Growth ratio of filter number” controls the in-
crement of filter number after each convolutional block. For exam-
ple, given the number of output filters of stem convolution layer as
32, a growth ratio of 1.5 means the number of channels after the first
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Table 1: List of modules that can be selected to build a model ar-
chitecture.

id Module description

0 Identity Mapping
1 3× 3 DSC module
2 5× 5 DSC module
3 3× 3 Inverted Residual module
4 5× 5 Inverted Residual module

Table 2: The search space of CNN architectures.

Model Configuration Possible Choice

Number of blocks 2,3,4
Stem conv. output filters 4 - 128

Growth ratio of filter number 1.0,1.25,1.50,1.75,2.0

Block 1 module A id 0,1,2,3,4
Block 1 module B id 1,2,3,4
Block 1 pooling layer Avg. Pool, Max Pool

Block 2 module A id 0,1,2,3,4
Block 2 module B id 1,2,3,4
Block 2 pooling layer Avg. Pool, Max Pool

...

block is 32 × 1.5 = 48, after the second block is 48 × 1.5 = 72,
and so on. Allowing different growth ratios increases the diversity
of network shape in sampled architectures. When sampling a model
architecture from the search space, for each configuration item, ev-
ery possible choice has equal probability of being chosen.

3.3. Search Scheme

With the search space defined, we use the following search scheme
to find the high-performing architectures. First, a candidate model
architecture is randomly sampled from the search space. Then its
model size is checked. If the model size is too small (e.g., smaller
than 250 KB) or too large (larger than 500 KB), we discard this can-
didate architecture. If the model size requirement is satisfied, we
train the candidate model for only 3 epochs. The small number of
training epochs are empirically set for fast evaluation of candidate
architectures. This is based on the assumption that a better network
architecture consistently outperforms a worse architecture given the
same number of training epochs. The trained candidate model to-
gether with its accuracy on test set and test loss will be saved. After
a considerable number of candidate models being sampled, we se-
lect the model architecture with highest test set accuracy or lowest
test loss. It is trained from scratch with sufficient training epochs
(60 epochs in this study) for final evaluation.

4. EXPERIMENTS

4.1. Dataset

The TAU Urban Acoustic Scenes 2020 3Class development dataset
[13] is used for model training and testing. The audios are labeled
with three high level acoustic scenes: indoor, outdoor and trans-
portation. All the audio data is recorded with a single device in

binaural 48000Hz 24-bit format. Each audio signal is 10-second
long and there is in total 40 hours of audios in the dataset. We use
the officially provided train/test split for our experiments: the train-
ing set contains 25.5 hours of audios and the test set contains 11.6
hours of audios. The ratio of the amount of indoor, outdoor and
transportation data is around 3 : 4 : 3.

4.2. Data Preprocessing

For each 10-second binaural audio signal in the dataset, we compute
the wavelet-based filter-bank (scalogram) feature for each channel.
STFT is applied on audio waveform with 2048 FFT points, win-
dow length of 25 ms and hop length of 10 ms. Python library
Kymatio [14] is used to generate wavelet filters using support size
of 2048, maximum scale of the filters being 1024 and number of
wavelets per octave being 16. The wavelet filter-bank is applied
on the logarithm magnitude of the STFT result to obtain the scalo-
gram features. The resulted scalogram feature has the shape of
(1000, 128), where 1000 is the number of time frames and 128
is the number of frequency bins. The average and difference of the
scalogram features from two channels are concatenated and cut into
non-overlapping segments of 128 time frames. The resulted feature
segment of shape (2, 128, 128) is used as CNN input.

4.3. Optimization

For training the candidate model, we use initial learning rate (LR) of
0.001, and the LR is multiplied with 0.1 after each epoch. The num-
ber of training epochs is 3. The model is trained with binary cross-
entropy loss with Adam optimizer (β1 = 0.9 and β2 = 0.999).
Weight decay with coefficient 0.0015 is used for regularization pur-
pose. Mixup [15] is used for data augmentation. After the final
best-performing model is determined, the best model is trained from
scratch. In this case, the number of training epochs is 60. LR is
multiplied with 0.5 after every 4 epochs.

4.4. Results and Discussion

We randomly sampled 510 distinct candidate architectures with
model size in the range of 250 KB - 500 KB. Training (for 3 epochs)
and testing a candidate model take about 20 minutes using single
GPU and thus in total it takes about 170 hours to evaluate 510 can-
didate architectures. Figure 3 shows the accuracies of candidate
models (trained for 3 epochs) which satisfy the model size require-
ment. It can be seen that the accuracies of most candidate models
are in the range of 92% - 94%. The difference in model size seems
to have very mild influence on the model accuracy. Besides, we
observe that models having highest accuracy not necessarily have
lowest test loss given 3 training epochs. Thus, we picked two rep-
resentative model architectures: model A has the highest test set
accuracy and model B has the lowest test loss. Their architectures
are shown in Table 3. Notice that model B has a constant number of
filters in each convolution layer (growth ratio of filter number be-
ing 1.0). It is quite counter-intuitive because for typical CNNs, the
number of filters will increase after each convolutional block.

Figure 4 shows the accuracy distribution of candidate models
with different growth ratio of filter number. According to the fig-
ure, we calculate the mean accuracy of models with growth ra-
tio being 2.0, 1.75, 1.5, 1.25 and 1.0, and the mean accuracy is
92.5%, 92.9%, 92.9%, 93.2% and 93.3% respectively (the mean
model sizes of different growth ratios are similar, which are around
374 ± 8 KB). Thus, models with low growth ratio of filter number
exhibit higher accuracy than high growth ratio. The reason could
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Table 3: Architectures of light-weight models with highest test ac-
curacy (model A) and lowest test loss (model B) given 3 training
epochs. “IRwLB” means the inverted residual with linear bottle-
neck module. “DSC” means the depthwise separable convolution
module. For each layer, the number inside “()” is the number of
output filters.

Model A Model B

1 3× 3 Stem Conv. (76) 3× 3 Stem Conv. (64)

2 3× 3 IRwLB (76) 3× 3 IRwLB (64)
3 3× 3 DSC (133) 2× 2 AvgPool
4 2× 2 AvgPool 3× 3 DSC (64)
5 5× 5 DSC (133) 2× 2 AvgPool
6 5× 5 DSC (232) 5× 5 DSC (64)
7 2× 2 MaxPool 3× 3 DSC (64)
8 2× 2 AvgPool
9 3× 3 IRwLB (64)
10 3× 3 DSC (64)
11 2× 2 AvgPool

12 GlobalAvgPool GlobalAvgPool
13 Fully Connected Fully Connected
14 3-way Sigmoid 3-way Sigmoid

be because we only have 3 output classes, and thus it is sufficient to
classify them using embedding features with small dimension.

Figure 3: The candidate models’ accuracy (trained for 3 epochs)
and their model sizes. Each dot represents a candidate model.

To have a grasp of how well the light-weight models perform,
we manually designed and trained a CNN modified from AlexNet
[16] with large model size (33.8 MB). Besides, we evaluate the per-
formance of several light-weight models which are designed for vi-
sion applications. To apply them on the ASC task, we change the
number of input channels to 2 and the number of output classes to
3, other parts of the model architectures remain unchanged.

Table 4 shows the performance of models with various model
size. It can be seen that MobileNets and ShuffleNet V2 preserve
most of the performance comparing to the large model “AlexNet
(Modified)”. Meanwhile, our model A and model B perform even
better than the “AlexNet (Modified)” with model size less than 1/10
of ShuffleNet V2. The model size can be further reduced by con-
verting the model parameters to float-16 format (originally they are
in float-32) without loss of accuracy.

In the Task 1B of DCASE 2020 challenge, our ASC system
using a single model B achieves an accuracy of 94.2% in the eval-
uation dataset [17], which ranks 6th out of the 30 teams. The order
of official system ranking (on evaluation dataset) of our submitted
systems is the same as the order of system ranking on the test set
of development dataset, which indicates that there should be little
over-fitting to the development test set when its information is used
to pick the high-performing models.

Figure 4: Normalized histograms of accuracy of candidate models
with different growth ratio of filter number. The x-axis represents
the candidate model accuracy on development dataset. The y-axis
represents the normalized count of models lying in the accuracy
range.

Table 4: Size and accuracy of ASC models. The mod-
els are trained and tested using the officially provided
train/test split on development dataset.

Model Model Size (MB) Accuarcy

AlexNet (Modified) 33.8 95.5%
MobileNet V1 12.2 94.8%
MobileNet V2 8.5 94.4%
ShuffleNet V2 4.8 94.0%

Model A (float-32) 0.42 95.6%
Model A (float-16) 0.21 95.6%
Model B (float-32) 0.29 95.8%
Model B (float-16) 0.15 95.8%

5. CONCLUSIONS

In this study, a simple yet effective random search policy is pro-
posed to find high-performing light-weight models for ASC. On the
TAU Urban Acoustic Scenes 2020 3Class development dataset used
for Task 1B of DCASE 2020 challenge, our best-performing model
achieves an accuracy of 95.8% with model size being only 150 KB.
Analysis on sampled architectures shows that CNNs with constant
number of filters in each convolutional layer perform better than
CNNs with increasing number of filters. We show that the simple
random search scheme can work well in finding high-performing
models, and it may serve as a baseline for further study on NAS
algorithms in ASC task.
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