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ABSTRACT

In this paper, we present our system of sound event detection and
separation in domestic environments for DCASE 2020. The task
aims to determine which sound events appear in a clip and the
detailed temporal ranges they occupy. The system is trained by
using weakly-labeled and unlabeled real data and synthetic data
with strongly annotated labels. Our proposed model structure in-
cludes a feature-level front-end based on convolution neural net-
works (CNN), followed by both embedding-level and instance-level
back-end attention modules. In order to make full use of the large
amount of unlabeled data, we jointly adopt the Guided Learning and
Mean Teacher approaches to carry out weakly-supervised learning
and semi-supervised learning. In addition, a set of adaptive median
windows for individual sound events is used to smooth the frame-
level predictions in post-processing. In the public evaluation set of
DCASE 2019, the best event-based F1-score achieved by our sys-
tem is 48.50%, which is a relative improvement of 27.16% over the
official baseline (38.14%). In addition, in the development set of
DCASE 2020, our best system also achieves a relative improvement
of 32.91% over the baseline (45.68% vs. 34.37%).

Index Terms— Guided learning, Mean teacher, Semi-
supervised learning.

1. INTRODUCTION

DCASE 2020 Task 4 is a follow-up to DCASE 2019 Task 4, which
aims to develop a sound event detection (SED) system that can pre-
dict not only the presence of events, but also the onset and offset
positions of each event. The challenge provides three types of data,
namely, weakly-labeled data (without timestamps), unlabeled data,
and synthetic data with strong annotations (with timestamps). Each
10-second audio clip contains one or more (or none) of 10 sound
events, including alarm bell ringing, blender, cat, dishes, dog, elec-
tric shaver, frying, running water, speech, and vacuum cleaner. The
training set contains much more unlabeled data than labeled data. In
addition, the number of training clips for each label is unbalanced.

Traditional approaches of SED often adopt deep neural net-
works such as CNN [1, 2, 3], recurrent neural network (RNN) [4],
or convolutional recurrent neural network (CRNN) [5], and usually
require a lot of strongly annotated real data, making them unsuitable
for this task. Therefore, the main focus of the task is to effectively
exploit unlabeled training data, and to mitigate the impact of label
preference during training to achieve better test performance.

To deal with the aforementioned problems, previous methods
tend to adopt weakly-supervised or semi-supervised learning tech-
niques [6, 7]. Recently, the teacher-student structure is commonly

used in the task. In DCASE 2019, Guided Learning [8] introduced
us a brand new weakly-labeled semi-supervised learning algorithm.
It utilized a more professional teacher model designed for audio
tagging to guide the student model to learn from unlabeled data for
boundary detection. However, the system did not involve learning
from data with strongly annotated timestamp information.

Meanwhile, Mean Teacher [9] is another state-of-the-art ap-
proach for semi-supervised learning in the task. In DCASE 2019
Task 4, the Mean Teacher based system was the runner-up [10],
while in DCASE 2020 Task 4, its improved version became the of-
ficial baseline system. With the consistency loss, Mean Teacher
can learn not only from weakly and strongly annotated data, but
also from unlabeled data. Using unlabeled real data also prevent
the system from overfitting the strongly annotated synthetic data.
However, as we observed, using Mean Teacher to achieve better
performance usually requires a very robust representation, which
the current Mean Teacher-based system cannot provide.

In this paper, we present a unified approach to sound event de-
tection, which combines the best methods of the past. In the first
training step, Guided Learning learns a well-trained CNN front-end,
which can convert the input log Mel-spectrogram into an informa-
tive high-level representation. In the second training step, Mean
Teacher makes full use of strongly annotated information to train
the recurrent neural network (RNN) and frame-based scorer. By
making full use of weakly annotated real data, strongly annotated
synthetic data and unlabeled real data, our model achieves com-
petitive results in both audio tagging and boundary detection. In
addition, we also use a set of event-dependent median windows to
further improve boundary detection by smoothing the frame-level
predictions of each event in post-processing.

The remainder of this paper is organized as follows. Section
2 introduces our proposed method for sound event detection, in-
cluding the model structure, learning process, and adaptive issues.
More detailed information about Mean Teacher and Guided Learn-
ing is also provided. Section 3 presents the experimental setup and
results. Finally, we conclude this paper in Section 4.

2. PROPOSED METHOD

Our system is developed based on the official baseline system,
which is based on Mean Teacher [9, 10] and is an improved ver-
sion of the second best submission system of DCASE 2019 Task 4.
Figure 1 shows the overall flowchart of our system. We train our
model with two training steps, namely Guided Learning [8, 11, 12]
(Step 1) and Mean Teacher (Step 2). The details of the two train-
ing steps and model structures will be explained in the following
sections.
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Figure 1: Flowchart of our system. The CNN front-end is pre-
trained by the Guided Learning algorithm in Step 1. In Step 2, Mean
Teacher learning is used to fine-tune the pre-trained CNN front-end
and train the frame-based scorer and iATP simultaneously.

2.1. Model structures

As shown in Figure 1, the model consists of a CNN front-end, which
aims to generate robust high-level representations, followed by sev-
eral scoring and attention pooling modules. The model is trained in
two training steps. In Step 1, an embedding-level attention pooling
module (eATP) converts the high-level representations into a clip-
level representation, which is then used by individual event-based
scoring modules to predict the clip-level event scores. In Step 2,
a frame-based scorer is connected after the CNN front-end to gen-
erate frame-level event scores, and then an instance-level attention
pooling module (iATP) produces the final clip-level event scores.
The detailed model structures are shown in Figures 2 and 3. We
utilize different training algorithms in the two steps. For Step 1,
we follow the Guided Learning framework in [11] and use a more
professional teacher model to carry out weakly-supervised learn-
ing. As for Step 2, we apply the Mean Teacher [9] method for
semi-supervised learning.

2.1.1. CNN front-ends

The CNN front-end adopts the same structure as in [8], as shown
in Figure 2(b). It consists of a batch normalization layer [13] and
three CNN blocks (cf. Figure 2(c)). Each CNN block has a single 2-
dimensional CNN layer, a batch normalization layer, and an ReLU
activation layer. A Max-pooling layer comes after each CNN block.
According to [8], the CNN-based structure can convert the input log
Mel-spectrogram into a robust high-level representation, which is
then passed to the pooling module. In our implementation, we pre-
train the CNN front-end using Guided Learning (cf. Step 1), and
then integrate it into the training process of Step 2.

2.1.2. Pooling modules

In [12, 14, 15], the effect of pooling on the SED task is highlighted.
The embedding-level pooling module directly aggregates the high-
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Figure 2: The CNN front-ends used in Guided Learning (Step 1),
where the PT-model and the PS-model are two key modules. Af-
terwards, the PS-model is taken as the initialization of the CNN
front-end in Mean Teacher learning (Step 2).

level feature representations into an event-based representation (cf.
eATP in Step 1 in Figure 1). The embedding-level pooling approach
is superior to instance-level pooling in general, so it is adopted in
Guided Learning. Since the strongly annotated data are not used in
the training process, it relies heavily on the CNN front-end prior to
eATP (cf. Figure 2(b)) to learn frame-level information, thereby re-
sulting in a stronger front-end. On the other hand, for the instance-
level approach, the high-level feature representations are passed to
the classifier to generate frame-level event scores. Then, the pooling
module aggregates frame-level scores into a clip-level event score.
The instance-level pooling approach can take advantage of strongly
annotated timestamp information by calculating the loss between
the frame-level event scores and the ground truth, but usually re-
quires a more powerful front-end to generate accurate scores.

We argue that by training the two pooling modules in turn,
the overall performance on both sides can be improved. The spe-
cific procedures are as follows. First, we use Guided Learning
with embedding-level pooling to obtain more robust and abstract
representations for instance-level pooling to generate better frame-
level event scores. Next, we utilize the strongly labeled information
through instance-level pooling to further fine-tune the front-end. As
shown in Figures 2 and 3, we adopt the same eATP structure and
event-based scorers in [12]. The same RNN structure and pooling
module as in the baseline system are used for the frame-level event
scorers and iATP in our model.

2.2. Learning processes

In this section, we explain the training process of our model. First,
we introduce two learning techniques, i.e., Guided Learning and
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Figure 3: Model structures of the scorers. Each event-based scorer
of Step 1 in (a) consists of a fully-connected (FC) layer and a
sigmoid-based activation function (Sigmoid). The frame-based
scorer of Step 2 in (b) consists of a Bi-LSTM, an FC Layer, and
Sigmoid.

Mean Teacher. Then, we describe how to integrate these two tech-
niques into our model learning process.

2.2.1. Guided Learning

As proposed in [8], Guided Learning consists of a teacher model
(PT-model) and a student model (PS-model), which are shown in
Figure 2(a) and (b). The PT-model has a deeper CNN front-end
structure and a larger receptive field than the PS-model. Therefore,
we can foresee that the PT-model will yield better audio tagging
performance.

Nevertheless, the larger receptive field is accompanied by
greater time compression in the PT-model, thus reducing the ability
of the model to see finer information hidden in the time dimension.
Therefore, the PS-model is designed not to perform time compres-
sion in order to obtain better performance in frame-level prediction.

Due to their different abilities in clip-level and frame-level pre-
dictions, we can make use of unlabeled data by making the PS-
model learn from the pseudo labels [16] generated by the PT-model.

2.2.2. Mean Teacher

As stated in [9], the main purpose of the Mean Teacher approach
is to average the model weights after each training step, e.g., to use
exponential moving average to produce a more accurate model in-
stead of directly using the latest model weights. We call the average
model as the Mean Teacher model (MT-model) and the latest model
as the Mean Student model (MS-model). In each training step, we
calculate two kinds of losses: the classification loss and the consis-
tency loss.

For the classification loss, we compute the binary cross entropy
from the predictions of the MS-model for the labeled data. As for
the consistency loss, it can be obtained by comparing the clip-level
and frame-level predictions given by the MS-model and the MT-
model for all the labeled and unlabeled data. In other words, we
want the MS-model and the MT-model to output similar predictions
for the same clip. The two losses are summed to update the MS-
model. Then, the MT-model is updated by the new average weights.

Table 1: Median window sizes (Swin) with respect to sound events.

Event Swin Event Swin

Alarm bell ringing 18 Electric shaver 161
Blender 52 Frying 196

Cat 29 Running water 80
Dishes 11 Speech 18
Dog 15 Vacuum cleaner 177

2.2.3. The GL-MT learning algorithm

The aforementioned CNN front-end is first pre-trained using
Guided Learning (Step 1 in Figure 1). After normalizing the in-
put log Mel-spectrograms of the real and synthetic training data
separately, we follow the process in Sec. 2.2.1 to train the CNN
front-end. To guarantee the ability of the PT-model, we use both
weakly annotated real data and strongly annotated synthetic data to
train the PT-model with a supervised loss with respect to clip-level
event scores. Then, the PS-model can be trained by using not only
the same supervised loss but also an unsupervised loss, where the
tags predicted by the PT-model for unlabeled data are considered as
the ground truth labels. Note that we do not adopt the feature dis-
entanglement method proposed in [12]. That is, all categories share
the same feature space of the extracted high-level representation.
The last layer of the CNN front-end from the PS-model can be an
informative representation, which is applied to frame-based scorers
in the Mean Teacher model (cf. Step 2).

After the CNN front-end is well-trained to be able to extract ro-
bust representations, Mean Teacher is used to simultaneously train
the Mean Teacher model and fine-tune the CNN front-end with the
strongly annotated training data. We calculate the classification loss
based on both clip-level and frame-level event scores. The model
can also exploit unlabeled data through calculating the consistency
loss between the predicted scores of the MS-model and MT-model.

2.3. Event detection

In our system, we take the mean of the clip-level event scores from
the Guided Learning model and the Mean Teacher model as the final
clip-level event scores, and use a threshold of 0.5 for 0/1 prediction.

The frame-level 0/1 prediction at time t is determined by

F (x, t) = p(xt) · C(x), (1)

where p(xt) denotes the frame-level event scores in Figure 3(b), and
C(x) represents the above mean clip-level scores. For an event,
if the corresponding F (x, t) is larger than the threshold, then the
output of 0/1 prediction will be 1. This threshold is also set to 0.5.

2.4. Adaptive median windows

A median filter can be used to post-process the frame-level output.
Once the frame-level event scores are generated by our system, they
will be smoothed by event-dependent median windows before be-
ing converted into 0/1 prediction with the threshold of 0.5. We will
then smooth the resulting 0/1 prediction sequence with the same set
of median windows. In [12], the importance of median filtering is
underlined. Instead of using a fixed-size window for every class
as in the baseline system, we design a specific median window for
each event so that each class has its own unique window. The idea
is to take into account the duration of each category in the dataset,
and to obtain more accurate boundaries by using median windows
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Table 2: F1-scores with respect to various models with a fixed me-
dian window size of 33.

Event-based Segment-based

Model Dev Eval Dev Eval

Baseline 34.37 38.14 69.07 71.68
GL-ps 37.78 37.26 70.01 72.44

GL-MT-ps 38.66 39.90 67.16 68.91
GL-MT-ms 40.96 42.20 70.83 73.35
GL-MT-ema 41.12 44.40 71.06 74.70

of appropriate length. To determine the size of the event-dependent
median window, we analyze the average duration of each event cat-
egory in the validation and synthetic sets. We follow [8] and calcu-
late the window size Swin as:

Swin = Davg × β, (2)

where β = 1/3, and Davg denotes the average duration of a class in
the dataset. Then, we make small adjustments to the window sizes
given by Eq. 2 based on the validation results. Table 1 shows the
final window size of each event.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

We utilize the dataset provided by DCASE 2020 as our training
dataset, which consists of 3 subsets: weakly-annotated data (1,578
clips), unlabeled data (14,412 clips), and strongly-annotated data
(2,584 clips). The weakly-labeled and unlabeled data are real data
with a sampling rate of 44,100Hz, while the strongly-annotated data
are synthetic data with a sampling rate of 16,000Hz.

In DCASE 2020 Task 4, the event-based F1-score (macro-
average) [17] is used to evaluate the performance. We take the 1,168
clips from the validation set provided by DCASE 2020 as our devel-
opment set and the 692 clips from the public evaluation set provided
in DCASE 2019 as our evaluation set. The validation and evalua-
tion data are real data with a sampling rate of 44,100Hz. All the
data at 44,100Hz are downsampled to 16,000Hz in this work. We
report both event-based and segment-based (1s) detection results.

3.2. Training

In Step 1, we utilize a mini-batch of 32 10-second clips and the
Adam optimizer [18] with an initial learning rate of 0.0018 to train
our model for 100 epochs. The learning rate is reduced by 20%
every 10 epochs. The same optimizer with a lower initial learning
rate of 0.001 is then adopted for Step 2 training. We evaluate the
event-based F1-score after each epoch on the development set, and
store the best model accordingly.

3.3. Results

The original Guided Learning-based system is named GL-ps, which
uses the PS-model as the detector. Our approaches of combining
Guided Learning and Mean Teacher are named GL-MT-ms and GL-
MT-ps, which use the MS-model and the PS-model as the detector,
respectively. In addition, we also use the exponential moving aver-
age (EMA) model from Mean Teacher in Step 2 as the detector.

Table 3: F1-scores with respect to various models with adaptive
median window sizes.

Event-based Segment-based

Model Dev Eval Dev Eval

GL-ps 45.05 42.53 70.81 72.34

GL-MT-ps 45.42 45.41 69.04 70.93
GL-MT-ms 45.68 47.47 71.96 74.63
GL-MT-ema 45.65 48.50 71.87 75.83

This model is named GL-MT-ema. We compare three GL-MT-
based models with the baseline model provided by DCASE 2020
and the GL-ps model.

Table 2 shows the F1-scores of different models with a fixed-
size median window for post-processing. For the baseline system,
the size is 28 (it is 7, but is equivalent to 28 considering the time
compression factor). For the other models, the size is empirically
set to 33 according to the validation results. From Table 2, we
can see that GL-MT-ms and GL-MT-ema outperform the baseline
and GL-ps, which are based on Mean Teacher and Guided Learn-
ing, respectively. However, GL-MT-ps is not always better than
the baseline and GL-ps. GL-MT-ms consists of the same RNN-
based frame-based scorer and instance-level pooling module as the
official baseline system and a more robust CNN front-end. The re-
sults support our argument that a better CNN front-end can produce
more useful high-level representations for the frame-based scorer
to generate more accurate frame-level event scores. Overall, the ex-
perimental results confirm the effectiveness of combining Guided
Learning and Mean Teacher for sound event detection.

Next, we evaluate effectiveness of the adaptive median win-
dows for post-processing. The results are shown in Table 3. Com-
paring Table 3 with Table 2, we can see that all the models with
adaptive median windows are superior to their counterparts with
a fixed-size median window. The results confirm the effective-
ness of the adaptive media windows for post processing. GL-MT-
ema achieves the best performance, with relative improvements of
27.16% (48.50% vs. 38.14%) and 5.79% (75.83% vs. 71.68%) in
terms of event-based and segment-based F1-scores over the base-
line on the evaluation set.

4. CONCLUSIONS

This paper presents our submission systems for DCASE 2020 Task
4. We utilize a CNN-based front-end with different pooling mod-
ules and scorers, including embedding-level attention pooling with
event-based scorers and frame-based scorers with instance-level at-
tention pooling. We combine Guided Learning and Mean Teacher
methods to carry out weakly-supervised and semi-supervised learn-
ing. We perform the two training steps in sequence. The first
training step pre-trains a robust CNN front-end to provide more in-
formative high-level representations for the second training step to
train the back-end detector. It is confirmed that joint Guided Learn-
ing and Mean Teacher training is superior to the respective single
training method. In addition, we adopt adaptive median windows
for post-processing. The experimental results show that adaptive
median windows can produce more accurate event boundaries than
fixed-size median windows.
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