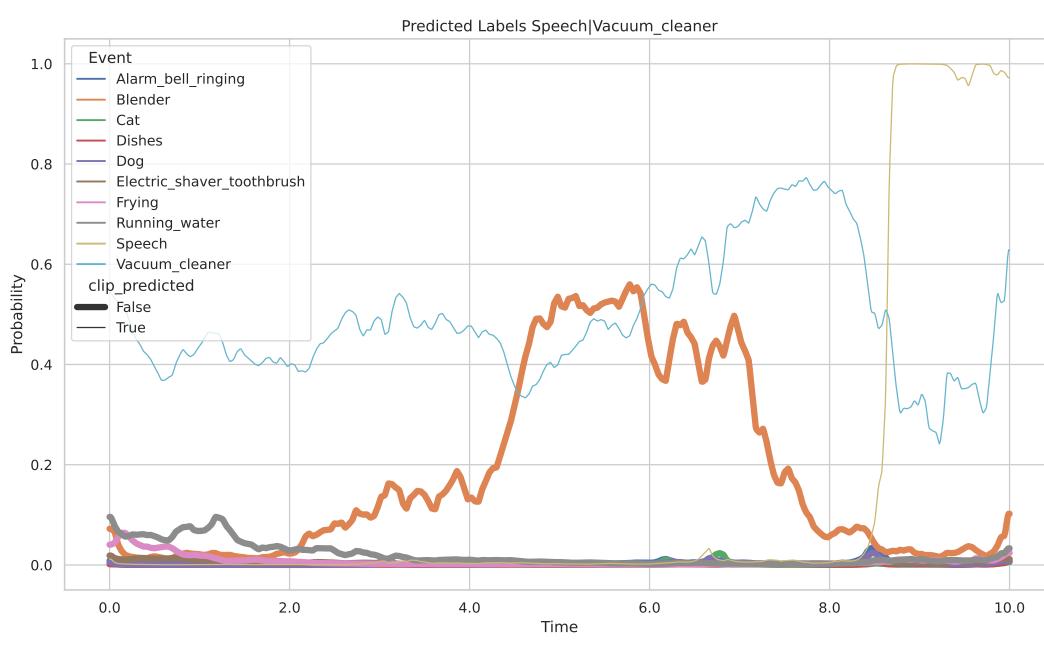
A LIGHTWEIGHT APPROACH FOR SEMI-SUPERVISED SOUND EVENT DETEC-TION WITH UNSUPERVISED DATA AUGMENTATION Heinrich Dinkel, Xinyu Cai, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Yujun Wang Xiaomi Corporation

Highlights

- Propose a lightweight (parameters) approach for semi-supervised sound event detection.
- A simple learnable clip-smoothing approach to enhance **consis**tency.
- First time using unsupervised data augmentation (**UDA**) in SED.
- 7th best approach in the challenge.
- 2nd best approach from a single model.

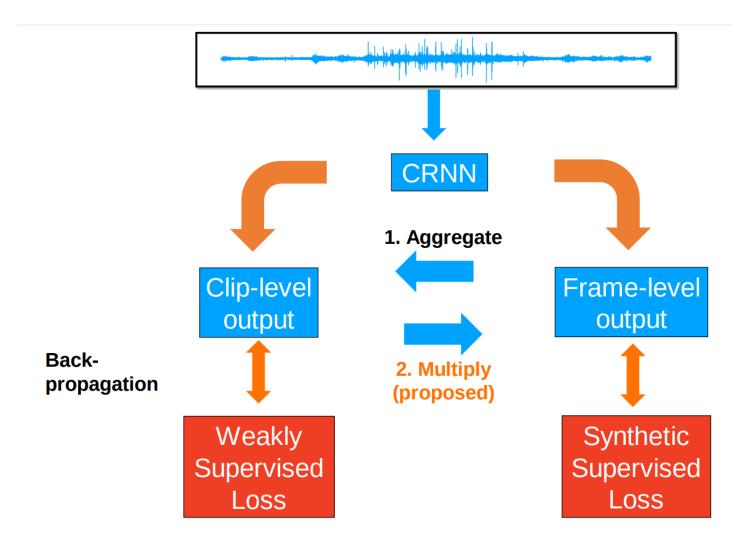
Problem statement

- Clip-level output is a (generally non-linear) combination of framelevel outputs.
- This leads to conflicting predictions between frame-level and cliplevel outputs.



Learnable Clip Smoothing

Smoothing frame-level prediction by the clip-level probabilities. Learning how to smooth via the synthetic supervised loss.



Unsupervised data augmentation

Calculate a consistency loss for an unlabaled sample between its original and augmented variants. Augmentation is done on wave-level.

> $x^{\dagger} = \operatorname{Aug}(x),$ $\mathcal{M}(x) \mapsto (\hat{y}, \hat{y}_t),$ $\mathcal{M}(x^{\dagger}) \mapsto (\hat{y}^{\dagger}, \hat{y}_t^{\dagger}),$ $\mathcal{L}_{\text{UDA}}(x) = \mathcal{L}_{\text{consistency}}(\hat{y}^{\dagger}, \hat{y}) + \mathcal{L}_{\text{consistency}}(\hat{y}_{t}^{\dagger}, \hat{y}_{t}).$

Dataset and Training

Aggregation function is Linear softmax:

$$\hat{y} = \frac{\sum_t \hat{y}_t^2}{\sum_t \hat{y}_t}$$

Training dataset consists of a weakly supervised dataset (weak), a strongly supervised synthetic (syn) dataset and an unlabaled (un) dataset.

$$\mathcal{D}_{weak} = \{(x_1, y_2), (x_2, y_2), \dots, (x_N, y_N)\},\$$

$$\mathcal{D}_{syn} = \{(x_1, y_2), (x_2, y_2), \dots, (x_M, y_M)\},\$$

$$\mathcal{D}_{un} = \{x_1, \dots, x_P\}.$$

Our approach optimizes the following loss functions:

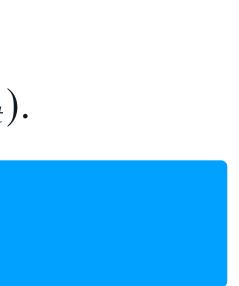
$$\begin{split} \mathcal{L}_{sup} &= \mathsf{BCE}(\hat{y}, y), \{y, \hat{y}\} \in \mathcal{D}_{weak}, \\ \mathcal{L}_{syn} &= \mathsf{BCE}(\hat{y}_t, y_t), \{y_t, \hat{y}_t\} \in \mathcal{D}_{syn}, \\ \mathcal{L}_{unsup} &= \mathcal{L}_{UDA}(x) = \mathsf{BCE}(\hat{y}^{\dagger}, \hat{y}) + \mathsf{BCE}(\hat{y}_t, \hat{y}_t), x \in \mathcal{L}_{unsup} \end{split}$$

Development dataset results

	Baseline results				
Data	d'	E-F1	I-F1	PSDS-1	PSDS-2
Weak	2.28	22.71	49.06	15.17	33.4
+ Syn	2.23	30.39	49.63	19.01	28.1
++ Unlabel	2.47	32.11	52.14	26.87	42.19

With learn-able clip smoothing

Data	d'	E-F1	I-F1	PSDS-1	PSDS-2
		22.99		19.98	46.5
+ Syn	2.21	35.31	54.84	29.85	47.34
++ Unlabel	2.50	37.21	57.12	34.41	54.90



 \mathcal{D}_{un} .

-2

Challenge results against competition

We achieved the 7th place in the DCASE2021 Task4 Challenge, without post-processing.

Model	PSDS-1	PSDS-2	PSDS-Avg	Post
Baseline	31.5	54.7	43.1	Median
1st	45.2	74.6	59.9	
2nd	44.2	67.4	55.8	
3rd	39.9	71.5	55.7	
3rd	41.9	68.6	55.2	Median
4th	41.6	63.7	52.6	
5th	41.3	58.6	49.9	
6th	37.0	62.6	49.8	
S1	36.1	58.4	47.2	
S2	37.3	58.5	47.9	
S3	37.0	59.6	48.3	-
S4 (Single)	33.9	50.4	42.1	
Ours (best)	37.3	59.6	48.4	-

Post-challenge results

Reevaluation of our results on the evaluation set with median post-processing.

Single?	Score	PSDS-2	PSDS-1	#Param (M)	Model
Ν	1.40	74.6	45.2	14.3	1st
Y	1.32	67.4	44.2	20.2	2nd
Ν	1.29	71.5	33.9	79.2	3rd
Ν	1.29	68.6	41.9	50.0	3rd
Ν	1.24	63.7	41.6	119.8	4th
Y	1.20	65.4	38.2	3.4	S 3
Y	1.19	64.3	37.9	2.7	S2
Y	1.19	58.6	41.3	8.5	5th
Y	1.16	64.3	36.1	2.0	S1
Y	1.16	62.6	37.0	6.7	6th

Conclusion

- Learn-able clip-smoothing largely improves performance for PSDS-1 and 2.
- Successfully deployed UDA for SED.
- Most lightweight top-scoring model in the DCASE 2021 Task4 Challenge.

