
Introduction

• Acoustic event detection (AED) is the task of predicting sound events and their 
time boundaries.

• State-of-the-art models are usually ensembles, comprised of multiple layers of 
convolutional layers, or contain custom architecture.

• This work: applied novel knowledge distillation techniques on DCASE 2019 task 41

dataset for acoustic event detection
• Curriculum learning
• Custom SpecAugment data augmentation
• Loss masking

• After distillation, obtained strong event-based F1-score of 42.7%, compared to 
34.7% when training with a generic knowledge distillation method. Performance 
matches top submission of challenge
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Improved student model training for acoustic event detection models

• Teacher model: top performing submission for DCASE 2019 task 4 (Lin et al 2019)2

• Ensemble of 6 CNN models
• Includes custom architecture (“disentangled features”) 

• Student model:
• 3-layer LSTM followed by fully connected layer for frame predictions
• Attention mechanism over frame predictions to obtain clip-level 

(weak) predictions

• Dataset: 2019 DCASE task 4 dataset (sound event detection)
• 10 different event types (speech, dog, cat, alarm/bell/ringing, dishes, frying, blender, 

running water, vacuum cleaner, electric shaver/toothbrush)
• Contains weakly labeled (event predictions only), strongly labeled (onset and offset 

times for events included), and unlabeled data
• Input: extracted mel spectrogram features: 64 (20) frequency bands x 500 time 

frames for teacher (student) model

Data

Model training

• Tagging predictions from teacher model t are generated for unlabeled dataset and 
used as targets for student model. Let tc = teacher prediction for class c

• We use heuristic
μ(t, s) = maxc (|tc − sc |),

• i.e. the maximum difference in the teacher and student scores across all classes. 
This is a measure of how “difficult” the sample is.

• At each generation (5 epochs) we rank the unlabeled dataset by μ(t, s)
• Two schemes for adding samples from unlabeled dataset:

• 1) Easier samples first: add bottom 20%, then bottom 40%, then all 
samples

• 2) Harder samples first: add top 20%, then top 40%, then all samples 

• Motivation: for sound detection, the different classes have varying average 
durations. For example, vacuum cleaner have longer durations than durations

• We devised a custom SpecAugment method based on this observation, by using 
variable-length time masks

• For each clip, randomly pick top 2 events from the label. Apply time mask of 
0.25*median duration of those events to spectrograms

• Observation: the strong labels (500 frames x 10 classes) are sparse. 
• When learning from the strong labeled set ( or strong pseudolabels generated by 

the teacher model), we want to focus more on the positive frames 
• We address the sparsity issue with two types of masking in the loss function:

• Event masking: only events that are present in the clip contribute to 
the strong loss

• Segment masking: only frames containing sounds in the clip with 
12ms buffer before/ after contribute to the strong loss

Curriculum learning

Custom SpecAugment method

Loss masking
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Experiment Best val F1 Best test 
F1 

Mean ± sd
val F1 

Mean ± sd
test F1 

Lin ICT 3 45.3 42.7 N/A N/A

Easier first + event mask + custom 
SpecAug

41.6 42.7 40.7 ± 0.6 41.3 ± 0.9 

Event masking + custom Specaug 41.3 42.5 40.3 ± 0.7 41.0 ± 1.1 

Vanilla KD 34.1 34.7 33.1±0.7 33.5±0.9 

Easier first + event masking+ 
standard Specaug

40.7 41.6 40.0± 0.4 40.9± 0.6

Easier first + event masking + no 
Specaug

40.2 41.2 39.5 ± 0.4 39.9 ± 0.7 

Easier first + segment masking + 
custom Specaug

39.9 40.0 39.2± 0.4 39.1 ± 0.5

Easier first + no masking + custom 
specaug

35.7 34.5 33.9 ± 0.8 32.9 ± 0.8 

Comparison t-statistic Statistically significant at :

α = 0.2 α = 0.05 α = 0.01 

Easier first vs all 1.413 Y N N

Harder first vs all 0.143 N N N

Easier vs harder first 1.483 Y N N

Custom SpecAug vs standard 2.802 Y Y N 

Custom SpecAug vs none 7.055 Y Y Y

Standard SpecAug vs none 2.989 Y Y Y

Event mask vs segment 6.800 Y Y Y 

Segment mask vs none 19.875 Y Y Y

Event mask vs none 23.021 Y Y Y
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Results
• The results show that the best performance is attained by adding easier 

samples first, with a best event-based macro F1 score of 42.7%, on par 
with the best performing challenge submission. We compared our 
results to the top submission in the challenge (Lin ICT 3) 

• Comparatively speaking, we find the custom SpecAug works best, 
followed by vanilla SpecAug and no data augmentation.

• The best results were achieved using event masking (EM), followed by 
segment masking (SM) and no masking (NM). 

• For each of the techniques, we perform a t-test on the validation F1 scores of ten trials of 
each .

• We find that adding easier samples first in the pseudolabeled dataset is statistically 
significant at the α = 0.2 level, while the other techniques are significant at the α = 0.05 
level. 

• Progressively applying pseudolabeled samples, using variable-length time masking in 
SpecAug augmentation, and applying event masking to the loss function all contribute to a 
single model with a 42.7% macro event-based F1- score on the test set, matching state of 
the art performance of 42.7%.

Statistical significance and conclusion


