Waveforms and Spectrograms: Enhancing Acoustic Scene Classification Using Multimodal Feature Fusion

Dennis Fedorishin, Nishant Sankaran, Deen Dayal Mohan, Justas Birgiolas, Philip Schneider, Srirangaraj Setlur, Venu Govindaraju

Introduction

- Acoustic scene classification (ASC) has seen tremendous progress due to advances in CNNs and other signal processing techniques.
- While Mel-spectrograms are the most commonly used audio representation, we explore the fusion of multiple representations of audio signals: the raw waveform and Mel-spectrogram.

Methods

We design an end-to-end fusion model based on two CNN feature extractors and a unified classification layer.

- The waveform and spectrogram latent representations and I from branches F and F shown in the figure are fused together for the classification layers F_{c} .
- The classification \hat{c} of an audio sample's waveform and spectrogram x_{μ} and x_{s} is defined as:

$$\hat{c}_{(x_w,x_s)} = \operatorname*{argmax}_{c \in \mathbb{C}} F_c(F_w(x_w) + F_s(x_s))$$

Along with the fusion model, we utilize two sub-networks to investigate interactions and dynamics between modalities:

Spectrogram Sub-Network $F_{c}(F_{s}(x_{s}))$

• The spectrogram sub-network is trained only with Mel-spectrograms, omitting the waveform branch.

Waveform Sub-Network $F_{c}(F_{w}(x_{w}))$

• The waveform sub-network is trained only with waveforms, omitting the spectrogram branch.

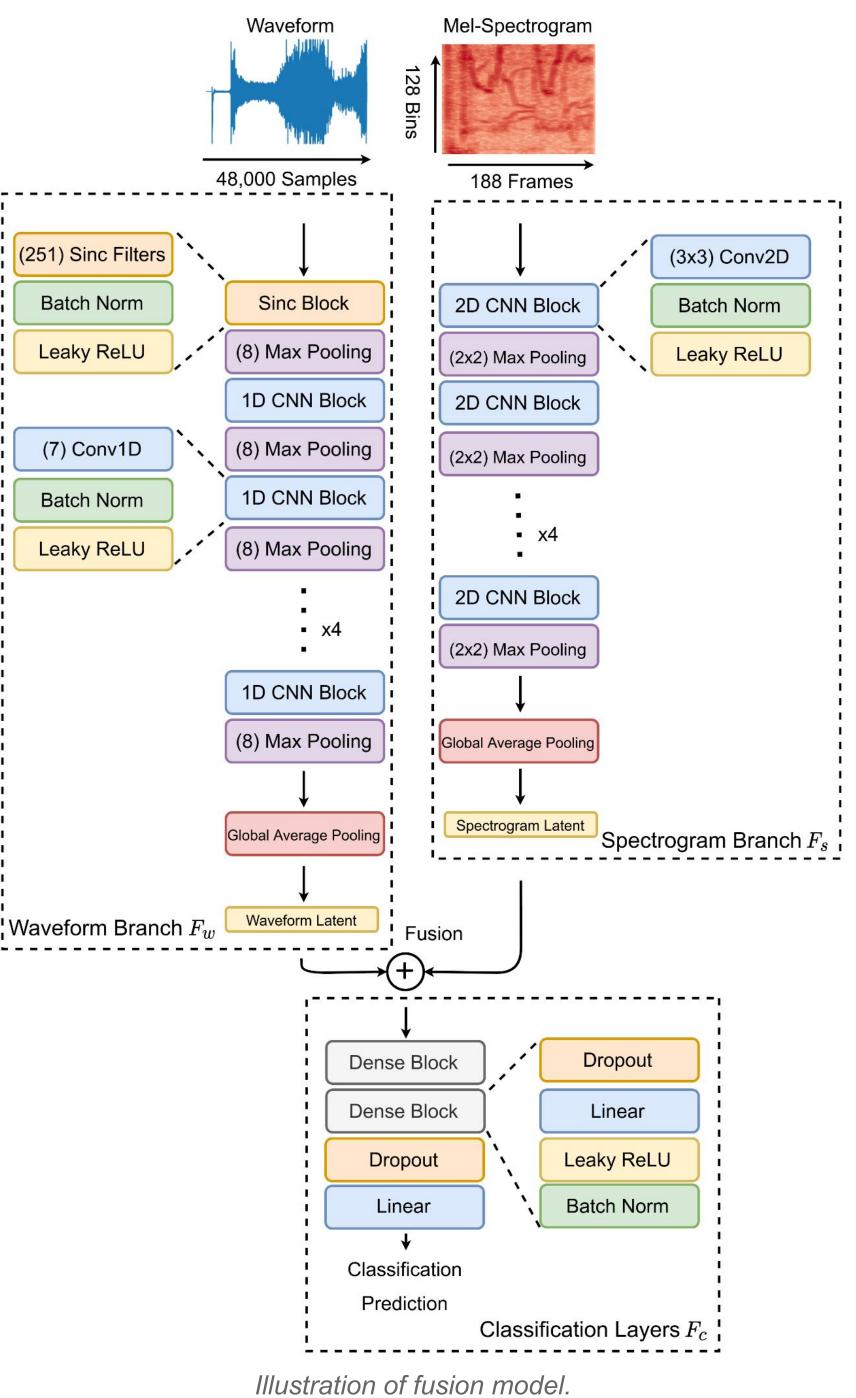
Batch Norm Leaky ReLU

Leaky ReLU

Waveform Branch F_w

_____ All experiments were conducted on the DCASE 2021 Challenge Task 1B Audio-Visual Scene dataset, using only the audio modality. Classification is performed on one-second intervals according to the challenge guidelines.

Workshop on Detection and Classification of Acoustic Scenes and Events



DCASE2021 Workshop

Results

improve ASC performance beyond a single modality.

- 5.7% increase in accuracy over DCASE 2021 Challenge Task 1B audio network baseline.
- 4.3% increase in accuracy over independent sub-networks, showing that complementary features are learned.

Table 3: Model performance compared to challenge baseline. Model Audio baseline [20] Waveform sub-network Spectrogram sub-network **Fusion Model**

Our proposed fusion method outperforms various other fusion

paradigms, showing latent vector fusion performs strongly.

Table 4: Fusion method comparisons.

Model Wavegram-Logmel-CNN **Decision** fusion Decision ensemble Proposed late fusion

Ablation Study Insights

When training the fusion model end-to-end, each sub-network learns disparate features that when fused together, improve ASC performance.

Table 6: Feature branch removal ablation study.

Model Spectrogram sub-network Fusion spectrogram brand Waveform sub-network Fusion waveform branch

- We experimentally determine that fusing features learned from waveform and Mel-spectrogram representations of audio

1 8					
	Accuracy %	Log Loss	# Params		
	65.1	1.048	-		
	64.79	1.045	1.0M		
	66.46	1.072	1.1M		
	70.78	0.915	1.4M		

Log Loss	# Params
1.063	80.2M
0.955	2.0M
0.845	2.0M
0.915	1.4M
	1.063 0.955 0.845

• Large performance drops when removing each branch.

	Accuracy %	Log Loss		
K	66.46	1.072		
ch only	51.33	1.720		
	64.79	1.045		
only	31.51	2.500		

UCTIONS

Certain classes have the lowest loss within one branch of the fusion model, lower than the fusion model with both branches.

• A stronger fusion method can fully exploit modality complementary to further improve ASC performance.

Table 8: Class-Wise losses of the fus				
Class-Wise loss	Fusion	Fusion spec.		
Class- wise 1088		branch only		
Airport	0.901	1.226		
Shopping Mall	0.944	0.995		
Metro Station	1.053	2.030		
Street Pedestrian	1.104	1.069		
Public Square	1.321	1.384		
Street Traffic	0.424	0.843		
Tram	0.899	2.106		
Bus	0.747	4.905		
Metro	1.145	2.825		
Park	0.535	0.443		

Conclusion

We present a novel ASC model that fuses complementary features of the raw waveform and Mel-spectrogram representations of audio.

- Our proposed fusion design outperforms various other experimentally tested methods.
- Each sub-network learns **disparate but complementary** features, improving overall ASC performance.
- We achieved 1st place against the DCASE 2021 Challenge Task 1B audio-only submissions for validation accuracy

and **2nd place** against validation loss.

This work was supported by the Center for Identification Technology Research (CITeR) and the National Science Foundation (NSF) under grant 1822190.

References

- H. Purwins, B. Li, T. Virtanen, J. Schluter, S.-Y. Chang, and T. Sainath, "Deep learning for audio signal processing," IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 2 ,pp. 206–219, 2019
- S. Wang, A. Mesaros, T. Heittola, and T. Virtanen, "A curated dataset of urban scenes for audio-visual scene analysis" 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.
- Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.Plumbley, "PANNS: Large-scale pretrained audio neural networks for audio pattern recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp.2880–2894, 2020.

Center for Unified Biometrics and Sensors School of Engineering and Applied Sciences

0.663 3.038 4.182 0.723 4.324 2.913

sion model. Fusion wave.

branch only

3.441

1.612

1.827

2.638