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Introduction
● Acoustic scene classification (ASC) has seen 

tremendous progress due to advances in CNNs and 

other signal processing techniques.

● While Mel-spectrograms are the most commonly used 

audio representation, we explore the fusion of multiple 

representations of audio signals: the raw waveform and 

Mel-spectrogram.

Methods
We design an end-to-end fusion model based on two CNN 
feature extractors and a unified classification layer.

● The waveform and spectrogram latent representations 
lw and ls from branches Fs and Fw shown in the figure 
are fused together for the classification layers Fc . 

● The classification ĉ of an audio sample’s waveform 
and spectrogram xw and xs is defined as:

Along with the fusion model, we utilize two sub-networks 
to investigate interactions and dynamics between 
modalities:
Spectrogram Sub-Network Fc(Fs (xs ))

• The spectrogram sub-network is trained only with 

Mel-spectrograms, omitting the waveform branch.

Waveform Sub-Network Fc(Fw (xw ))

• The waveform sub-network is trained only with 

waveforms, omitting the spectrogram branch.

Results
We experimentally determine that fusing features learned from 
waveform and Mel-spectrogram representations of audio 
improve ASC performance beyond a single modality.

● 5.7% increase in accuracy over DCASE 2021 Challenge 
Task 1B audio network baseline.

● 4.3% increase in accuracy over independent sub-networks, 
showing that complementary features are learned.

Conclusion
We present a novel ASC model that fuses complementary 
features of the raw waveform and Mel-spectrogram 
representations of audio.

● Our proposed fusion design outperforms various other 
experimentally tested methods.

● Each sub-network learns disparate but complementary 
features, improving overall ASC performance.

● We achieved 1st place against the DCASE 2021 Challenge 
Task 1B audio-only submissions for validation accuracy 
and 2nd place against validation loss.

Ablation Study Insights
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Our proposed fusion method outperforms various other fusion 
paradigms, showing latent vector fusion performs strongly.

When training the fusion model end-to-end, each sub-network 
learns disparate features that when fused together, improve ASC 
performance.

● Large performance drops when removing each branch.

Certain classes have the lowest loss within one branch of the 
fusion model, lower than the fusion model with both branches.

● A stronger fusion method can fully exploit modality 
complementary to further improve ASC performance.

Illustration of fusion model.

All experiments were conducted on the DCASE 2021 Challenge 
Task 1B Audio-Visual Scene dataset, using only the audio 
modality. Classification is performed on one-second intervals 
according to the challenge guidelines.
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