

Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasuhiro Ohishi, Masahiro Yasuda, and Shoichiro Saito

NTT Corporation, Japan

What is ToyADMOS2?

- Task 2
- "ToyADMOS2" is a new large-scale dataset for anomaly detection in machine operating sound Designed for evaluating anomaly detection
- systems under Domain-shift conditions The dataset is freely available at

https://github.com/nttcslab/ToyADMOS2-dataset

Conditions

What is ToyADMOS2?

Toy-car models

A subset of this dataset is used in the

Unsupervised Anomalous Sound

Detection for Machine Condition

Monitoring under Domain Shifted

DCASE2021 Challenge Task2:

- Collected operating sound of miniature-machines (toys) under normal and anomaly conditions by deliberately damaging them
- with a controlled depth of damages (3 levels) in the anomaly samples

Design choice for domain-shift conditions Variation settings of sub-datasets

Toy train Toy car Five (A, B, C, D, E) Five (A, B, C, D, E) Model variations Five (1, 2, 3, 4, 5) Five (1, 2, 3, 4, 5) Speed levels Four (a, b, c, d) x 3 damage levels Anomaly conditions Mic. type and Ch. 1-3 Ch. 1-4 Dynamic channlel config. Condenser Ch. 4, 5 Ch. 5-8 Noise type Four recortdings 1,094 samples x 5 models x 5 speed levels Normal samples 91 hours x 5 ch 91 hours x 2 ch-sets 324 samples x 5 models x 5 speed levels Anomaly samples 27 hours x 5 ch 27 hours x 2 ch-sets Four types (24 hours) per a channel Noise samples

Toy car: Microphone arrangement

O NTT

ONTT

🕐 NTT

	Toy car	Toy train
а	Bent shaft	Obstructing stone
b	Deformed gears	Disjointed railway
С	Melted gears	Broken shaft
d	Damaged wheels	Flat tire

Deformed gears (High)

Toy car	Toy train
Bent shaft	Obstructing stone
Deformed gears	Disjointed railway
Melted gears	Broken shaft
Damaged wheels	Flat tire
	Toy car Bent shaft Deformed gears Melted gears Damaged wheels

Melted gears

O NTT

Toy car: Anomaly conditions

Toy car: Anomaly conditions

O NTT

Toy train: Microphone arrangement

Toy train: Anomaly conditions

	Тоу	car	Tov trai			
а	Bent	shaft	Obstruct			
b	Defo	Disjointe				
С	Melte	ed gears	Broken s			
d	Dam	aged wheels	Flat tire			
Disjointed railway						
Lo	W	Mid.	High			

Toy train: Anomaly conditions

	Toy car	Toy trai
а	Bent shaft	Obstruct
b	Deformed gears	Disjointe
С	Melted gears	Broken s
d	Damaged wheels	Flat tire

Broken shaft (High)

Recipe (easy template for generating test conditions) NTT

\rightarrow (🗧 🔒 github.com/nttcslab/ToyADMOS2-dataset 🔫	
\mathbf{O}	Search or jump to / Pull requests	
🖟 ntte	cslab / ToyADMOS2-dataset Public	

Example: Making Example Dataset

Run the following will create the equivalent benchmark dataset evaluated in the Table 3 of the paper, which is a compatible file-folder structure with the DCASE2021 challenge task 2. This will create dataset folder your_new_dataset . This will take about an hour.

- # This creates `clean` dataset. # This creates SNR=6dB dataset.
- python mixer.py /path/to/ToyADMOS2 your_new_dataset recipe_benchmark.xlsx 6
- recipe_example_car_shift.xlsx is also another example.
- recipe_template is a template, as well as one more example.

Example domain-shift condition

https://github.com/nttcslab/ToyADMOS2-dataset

python mixer.py /path/to/ToyADMOS2 your_new_dataset recipe_benchmark.xlsx clean

Recipe (easy template for generating sub-dataset) () NTT

02		• ^ V	Jx	oycar/normai					-1											
	Α	В		с	D	E	F	G	н	I	J		к				L	М	N	
1	No.	Folder		FileID	Model	CarlD	Speed	Defect	D. Level	# of Rec.			r0_pat				r0_mics	r0_nz	r0_qty	
2	1	ToyCar/normal	CN001	-carA1-speed1	A	A1	1	_	_	260		ToyCar/train/section_0	0_source_tra	ain_norm	nal_????	??.wav	[1,2,3,4,5]	1	30	
3	2	ToyCar/normal	CN002	-carA1-speed1	A	A1	1	-	-	260		ToyCar/train/section_0	0_source_tra	ain_norm	nal_????	??.wav	[1,2,3,4,5]	1	30	
4	3	ToyCar/normal	CN003-	-carA2-speed1	A	A2	1	-	-	260		ToyCar/train/section_0	0_source_tra	ain_norm	nal_????	??.wav	[1,2,3,4,5]	1	30	
5	4	ToyCar/norma	A	В		С				0			Р	Q	R	?.wav	[1,2,3,4,5]	1	30	
6	5	ToyCar/norma	No.	Folder		FileID				r1_p	at		r1_mics	r1_nz	r1_qty					Тоу
7	6	ToyCar/norma	120 1		CIVIZO-		JeeuJ													Тоу
8	7	ToyCar/norma	121	oyCar/normal	CN121-	carE1-sp	eedl													Тоу
9	8	ToyCar/norma23	122 T	foyCar/normal	CN122-	carE1-sp	eed1										[1 0 0 4 5]			Тоу
10	9	ToyCar/norma24	123 T	⊺oyCar/normal	CN123-	carE2-sp	eed1									?.wav	[1,2,3,4,5]	1	30	
11	10	ToyCar/norma	124 T	oyCar/normal	CN124-	carE2-sp	eed1									r.wav	[1,2,3,4,5]	1	30	
12	12	ToyCar/norma	125 T	oyCar/normal	CN125-	carE1-sp	eed1	ToyCar	/target_te	st/section_01	_targe	et_test_normal_?????.w	[1,2,3,4,5]	1	24	-r.wav	[1,2,3,4,5]	1	30	
10	12	27	126 T	oyCar/normal	CN126-	carE2-sp	eed1	ToyCar	/target_te	st/section_01	_targe	et_test_normal_?????.w	[1,2,3,4,5]	1	24		[1]2]0]4]0]	1		
		28	127 T	oyCar/normal	CN127-	carE1-sp	eed2	ToyCar	/target_te	st/section_01	_targe	et_test_normal_?????.w	[1,2,3,4,5]	1	24	-				
		29	128 T	oyCar/normal	CN128-	carE2-sp	eed2	ToyCar	/target_te	st/section_01	_targe	et_test_normal_?????.w	[1,2,3,4,5]	1	24	-				
		30	129 T	ovCar/normal	CN129-	carE1-sr	eed2									-				

Dataset analisys

DCASE2021 Challenge T2 results on ToyADMOS2

Rank	System	Source	e domair	n results	\$	Target	domain	results		
		ToyCar		Toy	Frain	Тоу	'Car	ToyTrain		
		AUC pAUC		AUC	pAUC	AUC	pAUC	AUC	pAUC	
1	Lopez_IL_task2_4	81.44%	59.05%	<u>77.56%</u>	<u>62.21%</u>	69.97%	60.39%	62.38%	57.78%	
2	Morita_SECOM_t ask2_3	56.47%	53.08%	52.23%	49.60%	66.04%	<u>64.47%</u>	40.47%	49.67%	
3	Wilkinghoff_FKIE_ task2_3	67.07%	63.05%	70.87%	56.19%	<u>72.83%</u>	63.77%	48.38%	52.39%	
4	Kuroyanagi_NU- HDL_task2_3	62.02%	59.69%	71.49%	58.98%	61.38%	52.00%	54.42%	55.27%	
5	Sakamoto_Fixstar s_task2_1	<u>81.76%</u>	<u>71.53%</u>	66.24%	53.74%	66.46%	63.06%	57.75%	55.29%	
21	DCASE2021 baseline task2 AE	76.33% 51.26%		69.89%	55.49%	58.02%	53.42%	<u>67.18%</u>	<u>59.78%</u>	
						~				

Domain shift

Conclusion

- A new dataset for anomaly sound detection "ToyADMOS2" is proposed.
- Consists of two sub-datasets (Toy car and Toy train) for machine condition inspection.
- Domain shifts are represented by introducing several differences in operating conditions, such as different machine models and parts configurations, operating speeds, microphone arrangements and background noise types.
- The dataset can be used to assess anomaly detection systems. It is desired to develop anomaly detection systems working well even under domain-shift conditions.

Domain shift

